1064. Complete Binary Search Tree (30)

本文介绍了一种根据给定的非负整数序列构造完全二叉搜索树的方法,并通过递归实现中序遍历来完成树的构建,最后输出该树的层次遍历序列。

A Binary Search Tree (BST) is recursively defined as a binary tree which has the following properties:

  • The left subtree of a node contains only nodes with keys less than the node's key.
  • The right subtree of a node contains only nodes with keys greater than or equal to the node's key.
  • Both the left and right subtrees must also be binary search trees.

A Complete Binary Tree (CBT) is a tree that is completely filled, with the possible exception of the bottom level, which is filled from left to right.

Now given a sequence of distinct non-negative integer keys, a unique BST can be constructed if it is required that the tree must also be a CBT. You are supposed to output the level order traversal sequence of this BST.

Input Specification:

Each input file contains one test case. For each case, the first line contains a positive integer N (<=1000). Then N distinct non-negative integer keys are given in the next line. All the numbers in a line are separated by a space and are no greater than 2000.

Output Specification:

For each test case, print in one line the level order traversal sequence of the corresponding complete binary search tree. All the numbers in a line must be separated by a space, and there must be no extra space at the end of the line.

Sample Input:
10
1 2 3 4 5 6 7 8 9 0
Sample Output:
6 3 8 1 5 7 9 0 2 4
#include <iostream>
#include <cstdio>
#include <algorithm>
using namespace std;
const int maxn=1010;
int number[maxn],CBT[maxn],index=0,n;
void inOrder(int root)
{
    if(root>n) return;
    inOrder(root*2);
    CBT[root]=number[index++];
    inOrder(root*2+1);
}
int main()
{
    cin>>n;
    for(int i=0;i<n;i++)
    {
        cin>>number[i];
    }
    sort(number,number+n);
    inOrder(1);
    for(int i=1;i<=n;i++)
    {
        cout<<CBT[i];
        if(i<n)
        {
            cout<<" ";
        }
    }
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值