For any 4-digit integer except the ones with all the digits being the same, if we sort the digits in non-increasing order first, and then in non-decreasing order, a new number can be obtained by taking the second number from the first one. Repeat in this manner we will soon end up at the number 6174 -- the "black hole" of 4-digit numbers. This number is named Kaprekar Constant.
For example, start from 6767, we'll get:
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
7641 - 1467 = 6174
... ...
Given any 4-digit number, you are supposed to illustrate the way it gets into the black hole.
Input Specification:
Each input file contains one test case which gives a positive integer N in the range (0, 10000).
Output Specification:
If all the 4 digits of N are the same, print in one line the equation "N - N = 0000". Else print each step of calculation in a line until 6174 comes out as the difference. All the numbers must be printed as 4-digit numbers.
Sample Input 1:6767Sample Output 1:
7766 - 6677 = 1089 9810 - 0189 = 9621 9621 - 1269 = 8352 8532 - 2358 = 6174Sample Input 2:
2222Sample Output 2:
2222 - 2222 = 0000
#include <iostream>
#include <cstring>
#include <algorithm>
#include <cstdio>
#include <cstdlib>
using namespace std;
bool cmp(int a,int b)
{
return a>b;
}
void to_arry(int n,int num[])
{
for(int i=0;i<4;i++)
{
num[i]=n%10;
n/=10;
}
}
int to_number(int num[])
{
int sum=0;
for(int i=0;i<4;i++)
{
sum=sum*10+num[i];
}
return sum;
}
int main()
{
int n,min,max;
cin>>n;
int num[4];
while(1)
{
to_arry(n,num);
sort(num,num+4);
min=to_number(num);
sort(num,num+4,cmp);
max=to_number(num);
n=max-min;
printf("%04d - %04d = %04d\n",max,min,n);
if(n==0 || n== 6174) break;
}
return 0;
}
本文介绍了一个有趣的数学现象——通过特定操作使任意四位数(不全相同)最终都会收敛到6174这个被称为Kaprekar常数的黑洞数。并提供了一段C++代码来演示这一过程。
1650

被折叠的 条评论
为什么被折叠?



