二分图 小讲

本文介绍了二分图的基本概念及重要性质,包括最大匹配、最优匹配、增广路、最小顶点覆盖等内容,并探讨了如何通过算法解决这些数学问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

     为了更好地巩固,再理解一遍,也当是做个备忘、

     #  定义

     设G=(V,E)是一个无向图。如顶点集V可分割为两个互不相交的子集,并且图中每条边依附的两个顶点都分属两个不同的子集。则称图G为二分图。也就是说在二分图中,顶点可以分为两个集合X和Y,每一条边的两个顶点都分别位于X和Y集合中。如下图所示:

    

     # 最大匹配

     在G的一个子图M中,M的边集中的任意两条边都不依附于同一个顶点,则称M是一个匹配。选择这样的边数最大的子集称为图的最大匹配问题,最大匹配的边数称为最大匹配数.如果一个匹配中,图中的每个顶点都和图中某条边相关联,则称此匹配为完全匹配,也称作完备匹配。可以用匈牙利算法解决。

   

    # 最优匹配

    最优匹配又称为带权最大匹配,是指在带有权值边的二分图中,求一个匹配使得匹配边上的权值和最大。一般X和Y集合顶点个数相同,最优匹配也是一个完备匹配,即每个顶点都被匹配。如果个数不相等,可以通过补点加0边实现转化。可以使用KM 算法解决

    # 增广路(也称增广轨或交错轨)

    若P是图G中一条连通两个未匹配顶点的路径,并且属M的边和不属M的边(即已匹配和待匹配的边)在P上交替出现,则称P为相对于M的一条增广路径.
    由增广路的定义可以推出下述三个结论:
   1 - P的路径长度必定为奇数,第一条边和最后一条边都不属于M.
   2 - P经过取反操作可以得到一个更大的匹配M'.
   3 - M为G的最大匹配当且仅当不存在相对于M的增广路径.

    # 最小顶点覆盖

   指最少的顶点数使得二分图G中的每条边都至少与其中一个点相关联,二分图的最小顶点覆盖数=二分图的最大匹配数

   # 最小路径覆盖

   也称为最小边覆盖,是指用尽量少的不相交简单路径覆盖二分图中的所有顶点。二分图的最小路径覆盖数=|V|-二分图的最大匹配数

   # 最大独立集

   最大独立集是指寻找一个点集,使得其中任意两点在图中无对应边。对于一般图来说,最大独立集是一个NP完全问题,对于二分图来说最大独立集=|V|-二分图的最大匹配数。如下图中黑色点即为一个最大独立集:

  


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值