LEETCODE(三)

博客围绕逆波兰表达式求值展开,介绍其有效的运算符,说明整数除法只保留整数部分且表达式总是有效。指出逆波兰表达式是后缀表达式,与常见中序表达式不同,在计算机中利用栈数据结构可高效进行计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

逆波兰表达式求值

根据逆波兰表示法,求表达式的值。

有效的运算符包括 +-*/ 。每个运算对象可以是整数,也可以是另一个逆波兰表达式。

说明:

  • 整数除法只保留整数部分。
  • 给定逆波兰表达式总是有效的。换句话说,表达式总会得出有效数值且不存在除数为 0 的情况。

示例 1:

输入: ["2", "1", "+", "3", "*"]
输出: 9
解释: ((2 + 1) * 3) = 9

示例 2:

输入: ["4", "13", "5", "/", "+"]
输出: 6
解释: (4 + (13 / 5)) = 6

思路:逆波兰表达式实质上是表达式的后缀表达式形式,不同于我们常见的中序表达式,采用了逆波兰表达式后,在计算机中利用这一数据结构就能够高效的进行计算了。

class solution {
public:
	int evalRPN(vector<string> & tokens) {
		stack<int> sk;
		if (tokens.empty()) return 0;
		for (auto token : tokens) {
			if (token == "+" || token == "-" || token == "*" || token == "/") {
				int b = sk.top(); sk.pop();
				int a = sk.top(); sk.pop();
				if (token == "+"){
					sk.push(a+b);
				}
				else if (token == "-") {
					sk.push(a - b);
				}
				else if (token == "*") {
					sk.push(a*b);
				}
				else if (token == "/") {
					sk.push(a / b);
				}
			}
			else {
				sk.push(stoi(token));
			}
		}
		return sk.top();
	}
};

 

 

 

 

 

 

内容概要:本文档详细介绍了一个基于MATLAB实现的电力负荷预测项目,该项目运用遗传算法(GA)优化支持向量回归(SVR)和支持向量机(SVM)模型的超参数及特征选择。项目旨在解决电力系统调度、发电计划、需求侧响应等多个应用场景中的关键问题,特别是在应对高比例可再生能源接入带来的非线性、非平稳负荷预测挑战。文中涵盖了从数据接入、特征工程、模型训练到部署上线的全流程,包括详细的代码示例和GUI设计,确保方案的可复现性和实用性。 适用人群:具备一定编程基础,尤其是熟悉MATLAB语言和机器学习算法的研发人员;从事电力系统调度、电力市场交易、新能源消纳等相关领域的工程师和技术专家。 使用场景及目标:①通过构建面向小时级别的滚动预测,输出高分辨率负荷轨迹,为日内与日前滚动调度提供边际成本最小化的依据;②在负荷高峰和供给紧张时,通过价格信号或直接负荷控制实施需求侧响应,提升削峰效率并抑制反弹;③为灵活性资源(调峰机组、储能、可中断负荷)提供更清晰的出清路径,降低弃风弃光率,提升系统整体清洁度;④帮助市场主体更准确地评估边际出清价格变化,提高报价成功率与收益稳定性,同时降低由预测偏差带来的风险敞口;⑤在运维与审计场景中,对预测产生的原因进行说明,保障业务侧与监管侧的可追溯性。 阅读建议:此资源不仅提供了完整的代码实现和GUI设计,更注重于理解GA优化过程中涉及到的数据处理、特征构造、模型选择及评估等核心步骤。因此,在学习过程中,建议结合实际案例进行实践,并深入研究每个阶段的具体实现细节,特别是适应度函数的设计、超参数空间的定义以及多样性维护机制的应用。此外,关注项目中关于数据对齐、缺失值处理、特征标准化等方面的最佳实践,有助于提高模型的鲁棒性和泛化能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值