题目
题目链接:http://poj.org/problem?id=2796
题目来源:某单调栈题目总结
简要题意:求(区间内最小值乘以区间的和)的最大值
题解
根据题意,只需要求出以某值为最小值,向左右最多到哪里。
这题首先可以用单调栈来解决,利用单调栈求出左右到哪然后更新。
然后也可以利用一个类似dp的递推去求,利用之前处理的结果来加速递推,达到线性。
在此给出两个版本的代码,两种方法作用类似,运行时间也是接近的,代码行数也接近。
个人是觉得第二种方法更加直观,不过都学学也是好的。
单调栈代码
#include <iostream>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <cstring>
#include <stack>
#include <queue>
#include <string>
#include <vector>
#include <set>
#include <map>
#define pb push_back
#define mp make_pair
#define all(x) (x).begin(),(x).end()
#define sz(x) ((int)(x).size())
#define fi first
#define se second
using namespace std;
typedef long long LL;
typedef vector<int> VI;
typedef pair<int,int> PII;
LL powmod(LL a,LL b, LL MOD) {LL res=1;a%=MOD;for(;b;b>>=1){if(b&1)res=res*a%MOD;a=a*a%MOD;}return res;}
// head
const int N = 1E5+5;
int a[N];
LL sum[N];
int main()
{
int n;
while (scanf("%d", &n) == 1) {
a[0] = a[n+1] = -1;
for (int i = 1; i <= n; i++) {
scanf("%d", a+i);
sum[i] = sum[i-1] + a[i];
}
LL ans = -1;
int l, r;
stack<int> s;
s.push(0);
for (int i = 1; i <= n+1; i++) {
while (a[s.top()] > a[i]) {
int cur = s.top();
s.pop();
int cl = s.top()+1, cr = i-1;
LL cans = (sum[cr]-sum[cl-1]) * a[cur];
if (cans > ans) {
ans = cans;
l = cl, r = cr;
}
}
s.push(i);
}
printf("%I64d\n%d %d\n", ans, l, r);
}
return 0;
}
递推代码
#include <iostream>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <cstring>
#include <stack>
#include <queue>
#include <string>
#include <vector>
#include <set>
#include <map>
#define pb push_back
#define mp make_pair
#define all(x) (x).begin(),(x).end()
#define sz(x) ((int)(x).size())
#define fi first
#define se second
using namespace std;
typedef long long LL;
typedef vector<int> VI;
typedef pair<int,int> PII;
LL powmod(LL a,LL b, LL MOD) {LL res=1;a%=MOD;for(;b;b>>=1){if(b&1)res=res*a%MOD;a=a*a%MOD;}return res;}
// head
const int N = 1E5+5;
int a[N], l[N], r[N];
LL sum[N];
int main() {
int n;
while (scanf("%d", &n) == 1 && n) {
a[0] = a[n+1] = -1;
for (int i = 1; i <= n; i++) {
scanf("%d", a+i);
l[i] = r[i] = i;
sum[i] = sum[i-1]+a[i];
}
for (int i = 1; i <= n; i++) {
while (a[i] <= a[l[i]-1]) {
l[i] = l[l[i]-1];
}
}
for (int i = n; i > 0; i--) {
while (a[i] <= a[r[i]+1]) {
r[i] = r[r[i]+1];
}
}
LL ans = -1;
int al, ar;
for (int i = 1; i <= n; i++) {
LL cans = (sum[r[i]]-sum[l[i]-1]) * a[i];
if (cans > ans) {
ans = cans;
al = l[i], ar = r[i];
}
}
printf("%I64d\n%d %d\n", ans, al, ar);
}
return 0;
}