Java:多线程,线程同步,同步锁(Lock)的使用(ReentrantLock、ReentrantReadWriteLock)

本文通过三个示例对比synchronized关键字与Lock接口在Java多线程中的应用。首先介绍了Lock的基本使用方法,随后展示了如何利用两个不同的Lock实现线程间的协调工作,并进一步探讨了读写锁ReadWriteLock的应用场景。

关于线程的同步,可以使用synchronized关键字,或者是使用JDK 5中提供的java.util.concurrent.lock包中的Lock对象。本文探讨Lock对象。

synchronized与java.util.concurrent.locks.Lock 的相同点:Lock能完成synchronized所实现的所有功能;主要不同点:Lock有比synchronized更精确的线程语义和更好的性能。synchronized会自动释放锁,而Lock一定要求程序员手工释放, 并且必须在finally从句中释放。

一:先来一段简单的代码

这段代码以前曾经用synchronized关键字实现同步(Java:多线程,线程同步,synchronized关键字的用法(同步代码块、非静态同步方法、静态同步方法)),现在用Lock对象实现:

package com.clzhang.sample.thread;

import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;

public class LockThread1 implements Runnable {
    private Integer key = 0;
    
    // 锁对象
    private Lock lock = new ReentrantLock();  

    @Override
    public void run() {
        // 需要结果是key实现自增长,如果没有同步块,则可能会出现重复key值的现象
        lock.lock();
        try {
            key++;
            
            System.out.println(Thread.currentThread().getName() + ":" + key);
            try {
                Thread.sleep(10);
            } catch (InterruptedException e) {
            }
        }finally{
            // 上述代码实现功能与使用sychronized同步代码块一样。
            // sychronized同步代码块或同步方法在代码执行完之后锁自动释放;而用Lock则需要手工释放锁。
            // 为了保证锁最终被释放,释放锁代码放在finally块内。 
            lock.unlock();
        }
    }

    public static void main(String[] args) {
        LockThread1 lt = new LockThread1();
        
        for(int i=0; i<100; i++) {
            new Thread(lt, "Thread" + i).start();
        }
    }
}

部分输出:
Thread86:95
Thread88:96
Thread90:97
Thread98:98
Thread92:99
Thread96:100

二:再来一段稍复杂的代码

package com.clzhang.sample.thread;

import java.util.*;

import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;

public class LockThread2 implements Runnable {
    // 内部类
    class Student {
        private int age = 0;
        public int getAge() {
            return age;
        }
        public void setAge(int age) {
            this.age = age;
        }
    }

    // 全局变量定义
    private int count = 0;
    private Student student = new Student();

    // 锁对象
    private Lock lock1 = new ReentrantLock(false);
    private Lock lock2 = new ReentrantLock(false);

    @Override
    public void run() {
        String currentThreadName = Thread.currentThread().getName();
        System.out.println(currentThreadName + " is running!");
        
        lock1.lock();// 使用重入锁
        System.out.println(currentThreadName + " got lock1@Step1!");
        try {
            count++;
            Thread.sleep(3000);
        } catch (Exception e) {
            e.printStackTrace();
        } finally {
            System.out.println(currentThreadName + " first:count=" + count + "\tage=" + this.student.getAge());
            lock1.unlock();
        }

        
        lock2.lock();// 使用另外一个不同的重入锁
        System.out.println(currentThreadName + " got lock2@Step2!");
        try {
            Random random = new Random();
            int age = random.nextInt(100);
            this.student.setAge(age);
            Thread.sleep(3000);
        } catch (Exception ex) {
            ex.printStackTrace();
        } finally {
            System.out.println(currentThreadName + " second:count=" + count + "\tage=" + this.student.getAge());
            lock2.unlock();
        }
    }

    public static void main(String[] args) {
        LockThread2 lt = new LockThread2();
        for (int i = 1; i <= 3; i++) {
            Thread t = new Thread(lt, "Thread" + i);
            t.start();
        }
    }
}


输出:

Thread1 is running!
Thread1 got lock1@Step1!         // 线程1获取锁1
Thread3 is running!
Thread2 is running!
Thread1 first:count=1 age=0  
Thread3 got lock1@Step1!  
Thread1 got lock2@Step2!         // 线程3、1分别获取锁1、2
Thread3 first:count=2 age=13
Thread1 second:count=2 age=13     // count值已经被线程3更改;age是自己设置的。
Thread3 got lock2@Step2!
Thread2 got lock1@Step1!        // 线程3、2分别获取锁2、1
Thread2 first:count=3 age=34  
Thread3 second:count=3 age=34     // count值已经被线程2更改;age是自己设置的。
Thread2 got lock2@Step2!        // 线程2获取锁2
Thread2 second:count=3 age=40     // 没人改count值了;age是自己设置的。

参考:http://wenku.baidu.com/view/bba6ec24482fb4daa48d4b06.html

三:再来一段读写的代码

要求:写入和写入互斥,读取和写入互斥,读取和读取之间不互斥。

package com.clzhang.sample.thread;

import java.util.*;

import java.util.concurrent.locks.ReadWriteLock;
import java.util.concurrent.locks.ReentrantReadWriteLock;

public class LockThread3 implements Runnable {
    // 数据存放
    private StringBuilder sb = new StringBuilder();

    // 锁对象
    private ReadWriteLock rwl = new ReentrantReadWriteLock();

    @Override
    public void run() {
        if (Thread.currentThread().getName().startsWith("Read")) {
            rwl.readLock().lock();// 取到读锁
            try {
                System.out.println(Thread.currentThread().getName() + "正在读取...");
                try {
                    Thread.sleep(500);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }

                System.out.println(Thread.currentThread().getName() + "结果:" + sb.toString());
            } finally {
                rwl.readLock().unlock();// 释放读锁
            }
        } else if (Thread.currentThread().getName().startsWith("Write")) {
            rwl.writeLock().lock();// 取到写锁
            try {
                System.out.println(Thread.currentThread().getName() + "正在写入...");
                try {
                    Thread.sleep(1000);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                String writeData = "" + new Random().nextInt(100);
                sb.append(writeData + ",");

                System.out.println(Thread.currentThread().getName() + "结果:" + writeData);
            } finally {
                rwl.writeLock().unlock();// 释放写锁
            }
        } else {
            // 啥也不做行不
        }
    }

    public static void main(String[] args) {
        LockThread3 lt = new LockThread3();
        for (int i=0; i<5; i++) {
            Thread t = new Thread(lt, "Write" + i);
            t.start();
        }
        for (int i=0; i<5; i++) {
            Thread t = new Thread(lt, "Read" + i);
            t.start();
        }
    }
}

输出:

Write1正在写入...
Write1结果:25
Write0正在写入...
Write0结果:5
Read0正在读取...
Read2正在读取...
Read4正在读取...
Read2结果:25,5,
Read0结果:25,5,
Read4结果:25,5,
Write2正在写入...
Write2结果:77
Write4正在写入...
Write4结果:38
Read1正在读取...
Read3正在读取...
Read1结果:25,5,77,38,
Read3结果:25,5,77,38,
Write3正在写入...
Write3结果:77


原文地址:http://www.cnblogs.com/nayitian/p/3259353.html

内容概要:本文详细介绍了“秒杀商城”微服务架构的设计与实战全过程,涵盖系从需求分析、服务拆分、技术选型到核心功能开发、分布式事务处理、容器化部署及监控链路追踪的完整流程。重点解决了高并发场景下的超卖问题,采用Redis预减库存、消息队列削峰、数据库乐观锁等手段保障数据一致性,并通过Nacos实现服务注册发现与配置管理,利用Seata处理跨服务分布式事务,结合RabbitMQ实现异步下单,提升系吞吐能力。同时,项目支持Docker Compose快速部署和Kubernetes生产级编排,集成Sleuth+Zipkin链路追踪与Prometheus+Grafana监控体系,构建可观测性强的微服务系。; 适合人群:具备Java基础和Spring Boot开发经验,熟悉微服务基本概念的中高级研发人员,尤其是希望深入理解高并发系设计、分布式事务、服务治理等核心技术的开发者;适合工作2-5年、有志于转型微服务或提升架构能力的工程师; 使用场景及目标:①学习如何基于Spring Cloud Alibaba构建完整的微服务项目;②掌握秒杀场景下高并发、超卖控制、异步化、削峰填谷等关键技术方案;③实践分布式事务(Seata)、服务熔断降级、链路追踪、一配置中心等企业级中间件的应用;④完成从本地开发到容器化部署的全流程落地; 阅读建议:建议按照文档提供的七个阶段循序渐进地动手实践,重点关注秒杀流程设计、服务间通信机制、分布式事务实现和系性能优化部分,结合代码调试与监控工具深入理解各组件协作原理,真正掌握高并发微服务系的构建能力。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值