HDU - 1317 XYZZY

本文介绍了一种用于判断Advent风格游戏是否可被玩家赢得的算法。通过分析游戏地图中的房间能量值及连接关系,利用图算法确定玩家是否有足够的能量到达终点。

XYZZY

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 6667    Accepted Submission(s): 1928

Problem Description
It has recently been discovered how to run open-source software on the Y-Crate gaming device. A number of enterprising designers have developed Advent-style games for deployment on the Y-Crate. Your job is to test a number of these designs to see which are winnable.
Each game consists of a set of up to 100 rooms. One of the rooms is the start and one of the rooms is the finish. Each room has an energy value between -100 and +100. One-way doorways interconnect pairs of rooms.

The player begins in the start room with 100 energy points. She may pass through any doorway that connects the room she is in to another room, thus entering the other room. The energy value of this room is added to the player's energy. This process continues until she wins by entering the finish room or dies by running out of energy (or quits in frustration). During her adventure the player may enter the same room several times, receiving its energy each time.
 

Input
The input consists of several test cases. Each test case begins with n, the number of rooms. The rooms are numbered from 1 (the start room) to n (the finish room). Input for the n rooms follows. The input for each room consists of one or more lines containing:

the energy value for room i
the number of doorways leaving room i
a list of the rooms that are reachable by the doorways leaving room i
The start and finish rooms will always have enery level 0. A line containing -1 follows the last test case.

Output
In one line for each case, output "winnable" if it is possible for the player to win, otherwise output "hopeless".
 
Sample Input
50 1 2-60 1 3-60 1 420 1 50 050 1 220 1 3-60 1 4-60 1 50 050 1 221 1 3-60 1 4-60 1 50 050 1 220 2 1 3-60 1 4-60 1 50 0-1
Sample Output
hopelesshopelesswinnablewinnable

边没有权,点有权,所以另外用一个数组存点的权值。然后还要判断正权回路,判断正权回路之后还要判断一下这条回路能不能到达终点。

#include <iostream>
#include <stdio.h>
#include <string.h>
#define inf 0x3f3f3f3f
using namespace std;
struct node{
	int a,b;
}edge[110*110];
int en[110];//点的权值
int dis[110];//最短路径
int w[110][110];//点的连通性
void Ford (int m,int n)
{
    int i,j;
    for (int i = 1;i <= m; i++){
		dis[i] = -inf;
		w[i][i] = 1;
    }
    dis[1] = 100;

    for (i = 1;i <= m-1;i++){
        for (j = 1;j <= n;j++){
            if (dis[edge[j].b] < dis[edge[j].a]+en[edge[j].b] && dis[edge[j].a]+en[edge[j].b] > 0){//为了防止走到半路突然
            	//能量值为负,所以松弛的时候新的边必须满足权值为正。
                dis[edge[j].b] = dis[edge[j].a]+en[edge[j].b];
            }
        }
    }
    for (int i = 1;i <= m; i++){//判断连通性
		for (int j = 1;j <= m; j++){
			for (int k = 1;k <= m; k++){
				w[j][k] = w[j][k] || (w[j][i] && w[i][k]);
			}
		}
    }
	for (j = 1;j <= n;j++){//判断正权回路
		if (dis[edge[j].b] < dis[edge[j].a]+en[edge[j].b] && dis[edge[j].a]+en[edge[j].b] > 0){
			if (w[edge[j].b][m]){//=如果回路中的点可以到达m点
				cout <<"winnable\n";
				return ;
			}
		}
	}
	if (dis[m] > 0){
		cout << "winnable\n";
	}
	else{
		cout << "hopeless\n";
	}
}
int main ()
{
	int m;
	while (~scanf ("%d",&m) && m != -1){
		int cut = 1;
		memset(en,0,sizeof en);
		memset(edge,0,sizeof edge);
		memset(w,0,sizeof w);
		for (int k = 1;k <= m; k++){
			int total;
			cin >> en[k] >> total;
			for (int i = 1;i <= total; i++){
				int por;
				cin >> por;
				w[k][por] = 1;
				edge[cut].a = k;
				edge[cut++].b = por;
			}
		}
		Ford (m,cut-1);
	}

	return 0;
}

### 关于HDU - 6609 的题目解析 由于当前未提供具体关于 HDU - 6609 题目的详细描述,以下是基于一般算法竞赛题型可能涉及的内容进行推测和解答。 #### 可能的题目背景 假设该题目属于动态规划类问题(类似于多重背包问题),其核心在于优化资源分配或路径选择。此类问题通常会给出一组物品及其属性(如重量、价值等)以及约束条件(如容量限制)。目标是最优地选取某些物品使得满足特定的目标函数[^2]。 #### 动态转移方程设计 如果此题确实是一个变种的背包问题,则可以采用如下状态定义方法: 设 `dp[i][j]` 表示前 i 种物品,在某种条件下达到 j 值时的最大收益或者最小代价。对于每一种新加入考虑范围内的物体 k ,更新规则可能是这样的形式: ```python for i in range(n): for s in range(V, w[k]-1, -1): dp[s] = max(dp[s], dp[s-w[k]] + v[k]) ``` 这里需要注意边界情况处理以及初始化设置合理值来保证计算准确性。 另外还有一种可能性就是它涉及到组合数学方面知识或者是图论最短路等相关知识点。如果是后者的话那么就需要构建相应的邻接表表示图形结构并通过Dijkstra/Bellman-Ford/Floyd-Warshall等经典算法求解两点间距离等问题了[^4]。 最后按照输出格式要求打印结果字符串"Case #X: Y"[^3]。 #### 示例代码片段 下面展示了一个简单的伪代码框架用于解决上述提到类型的DP问题: ```python def solve(): t=int(input()) res=[] cas=1 while(t>0): n,k=list(map(int,input().split())) # Initialize your data structures here ans=find_min_unhappiness() # Implement function find_min_unhappiness() res.append(f'Case #{cas}: {round(ans)}') cas+=1 t-=1 print("\n".join(res)) solve() ```
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值