hdu 4862 最小k路径覆盖 费用流

本文探讨了游戏开发领域中AI音视频处理的应用,包括图像处理、AR特效、音视频直播流媒体等内容,深入解析了这些技术在游戏开发中的实际应用场景和实现方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

转自:http://blog.youkuaiyun.com/qq574857122/article/details/38047565

Jump

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 446    Accepted Submission(s): 185


Problem Description
There are n*m grids, each grid contains a number, ranging from 0-9. Your initial energy is zero. You can play up to K times the game, every time you can choose any one of the grid as a starting point (but not traveled before) then you can choose a grid on the right or below the current grid to jump, but it has not traveled before. Every time you can jump as many times as you want, as long as you do not violate rules. If you are from (x1, y1) to (x2, y2), then you consume |x1-x2|+|y1-y2|-1 energies. Energy can be negative. 
However, in a jump, if you start position and end position has same numbers S, then you can increase the energy value by S. 
Give me the maximum energy you can get. Notice that you have to go each grid exactly once and you don’t have to play exactly K times.
 

Input
The first line is an integer T, stands for the number of the text cases.
Then T cases followed and each case begin with three numbers N, M and K. Means there are N rows and M columns, you have K times to play.
Then N lines follow, each line is a string which is made up by M numbers.
The grids only contain numbers from 0 to 9.
(T<=100, N<=10,M<=10,K<=100)
 

Output
Each case, The first you should output “Case x : ”,(x starting at 1),then output The maximum number of energy value you can get. If you can’t reach every grid in no more than K times, just output -1.
 

Sample Input
  
5 1 5 1 91929 1 5 2 91929 1 5 3 91929 3 3 3 333 333 333 3 3 2 333 333 333
 

Sample Output
  
Case 1 : 0 Case 2 : 15 Case 3 : 16 Case 4 : 18 Case 5 : -1
 

Author
FZU
 

Source
 

题意:

给定n*m的矩阵

 选<=k个起点 
 每个起点可以向右或向下跳任意步 
 花费是2点间的曼哈顿距离 
 若2个格子的数字一样 
 则赚取格子上的数字的价值 

 问:遍历整个图的最小花费 

若不能遍历则输出-1

#include <stdio.h>
#include <string.h>
#include <iostream>
#include <math.h>
#include <queue>
#include <set>
#include <algorithm>
#include <stdlib.h>
using namespace std;
#define N 220
#define M 12345
#define inf (1<<29)
//注意 点标必须是 [0 - 汇点]
//双向边,注意RE
struct Edge{
    int from, to, flow, cap, nex, cost;
}edge[M*2];
int head[N], edgenum;
void add(int u,int v,int cap,int cost){//网络流要加反向弧
    Edge E={u, v, 0, cap, head[u], cost};
    edge[edgenum]=E;
    head[u]=edgenum++;
    Edge E2={v, u, 0, 0, head[v], -cost}; //这里的cap若是单向边要为0
    edge[edgenum]=E2;
    head[v]=edgenum++;
}
int D[N], P[N], A[N];
bool inq[N];
bool BeintmanFord(int s, int t, int &flow, int &cost){
    for(int i=0;i<=t;i++) D[i]= inf;
    memset(inq, 0, sizeof(inq));
    D[s]=0;  inq[s]=1; P[s]=0; A[s]=inf;
    queue<int> Q;
    Q.push( s );
    while( !Q.empty()){
        int u = Q.front(); Q.pop();
        inq[u]=0;
        for(int i=head[u]; i!=-1; i=edge[i].nex){
            Edge &E = edge[i];
            if(E.cap > E.flow && D[E.to] > D[u] +E.cost){
                D[E.to] = D[u] + E.cost ;
                P[E.to] = i;
                A[E.to] = min(A[u], E.cap - E.flow);
                if(!inq[E.to]) Q.push(E.to) , inq[E.to] = 1;
            }
        }
    }
    if(D[t] == inf) return false;
    flow += A[t];
    cost += D[t] * A[t];
    int u = t;
    while(u != s){
        edge[P[u]].flow += A[t];
        edge[P[u]^1].flow -= A[t];
        u = edge[P[u]].from;
    }
    return true;
}
int flow;
int Mincost(int s,int t){//返回最小费用
    flow = 0 ; int cost = 0;
    while(BeintmanFord(s, t, flow, cost));
    return cost;
}
void init(){memset(head,-1,sizeof head); edgenum = 0;}
int n, m, k;
int Hash1(int x, int y){ return (x-1)*m+y;}
int Hash2(int x, int y){ return n*m + (x-1)*m+y; }
char s[20];
int mp[20][20];
int main(){
#ifndef ONLINE_JUDGE
	freopen("in.txt","r",stdin);
#endif
    int T, i, j, g, Cas = 1; scanf("%d",&T);
    while(T--){
        cin>>n>>m>>k;
        for(i = 1; i <= n; i++)
        {
            scanf("%s",s+1);
            for(j = 1; j<=m; j++)
                mp[i][j] = s[j] - '0';
        }
        printf("Case %d : ", Cas++);
        init();
    int i, j, g;
    int from = 0, to = Hash2(n,m)+10, jiji = to-2;
    for(i = 1; i <= n; i++)
    {
        for(j = 1; j <= m; j++)
        {
            add(from, Hash1(i,j), 1, 0);
            add(Hash2(i,j), to, 1, 0);
            add(jiji, Hash2(i,j), 1, 0);
            for(g = j+1; g <= m; g++)
            {
                int cos = g - j - 1;
                if(mp[i][j] == mp[i][g]) cos -= mp[i][j];
                add(Hash1(i,j), Hash2(i, g), 1, cos);
            }
            for(g = i+1; g <= n; g++)
            {
                int cos = g - i - 1;
                if(mp[i][j] == mp[g][j]) cos -= mp[i][j];
                add(Hash1(i,j), Hash2(g, j), 1, cos);
            }
        }
    }
    add(from, jiji, k, 0);
    int ans = - Mincost(from, to);
    if(flow != n*m)
        puts("-1");
    else
        cout<< ans << endl;
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值