Functions again

本文探讨了一个关于Uzhlyandian函数的最大值问题。该函数定义为两个数组元素之间的差值绝对值之和,从数组的某个位置开始,奇数位置取正值,偶数位置取负值。通过动态规划的方法,文章提供了一种高效的算法来找到给定数组中该函数的最大可能值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Something happened in Uzhlyandia again... There are riots on the streets... Famous Uzhlyandian superheroes Shean the Sheep and Stas the Giraffe were called in order to save the situation. Upon the arriving, they found that citizens are worried about maximum values of the Main Uzhlyandian Function f, which is defined as follows:

In the above formula, 1 ≤ l < r ≤ n must hold, where n is the size of the Main Uzhlyandian Array a, and |x| means absolute value of x. But the heroes skipped their math lessons in school, so they asked you for help. Help them calculate the maximum value of f among all possible values of l and r for the given array a.

Input

The first line contains single integer n (2 ≤ n ≤ 105) — the size of the array a.

The second line contains n integers a1, a2, ..., an (-109 ≤ ai ≤ 109) — the array elements.

Output

Print the only integer — the maximum value of f.

Examples

Input

5
1 4 2 3 1

Output

3

Input

4
1 5 4 7

Output

6

Note

In the first sample case, the optimal value of f is reached on intervals [1, 2] and [2, 5].

In the second case maximal value of f is reachable only on the whole array.

思路:有关系式可知,它有xian相邻的两项的差,由l开始计数的,奇数项取正,偶数项取负,求和得到的。所以求两段最大和即可。

代码:

#include<stdio.h>
#include<string.h>
#include<math.h>
#include<algorithm>
using namespace std;

int n,a[100005];
long long l,r,ans,dp[100005][2];

int main()
{
	while(~scanf("%d",&n))
	{
		for(int i=1; i<=n; i++)
			scanf("%d", &a[i]);
		dp[1][0] = abs(a[1]-a[2]);
		dp[1][1] = (-1)*abs(a[1]-a[2]);
		l = dp[1][1];
		r = dp[1][0];
		ans = dp[1][0];
		for(int i=2; i<n; i++)
		{
			dp[i][0] = abs(a[i]-a[i+1]);
			dp[i][1] = r-abs(a[i]-a[i+1]);
			dp[i][0] = max(dp[i][0], dp[i][0]+l);
			l = dp[i][1];
			r = dp[i][0];
			ans = max(dp[i][0], ans);
			ans = max(dp[i][1], ans);
		}
		printf("%lld\n", ans);
	}
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值