No module named 'tensorflow.contrib'引流
刚开始学深度学习,发现很多mnist demo是基于tensorflow2写的,而现在安装tensorflow默认版本是2.0以上,上来就报这个错误。不想进行版本适配,就适配代码吧。
基础的MNIST CNN检测入门
From https://github.com/geektutu/tensorflow-tutorial-samples
记录下
import os
import tensorflow as tf
from tensorflow.keras import datasets, layers, models
class CNN(object):
def __init__(self):
model = models.Sequential()
# 第1层卷积,卷积核大小为3*3,32个,28*28为待训练图片的大小
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)))
model.add(layers.MaxPooling2D((2, 2)))
# 第2层卷积,卷积核大小为3*3,64个
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
# 第3层卷积,卷积核大小为3*3,64个
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.Flatten())
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(10, activation='softmax'))
model.summary()
self.model = model
class DataSource(object):
def __init__(self):
# mnist数据集存储的位置,如何不存在将自动下载
data_path = os.path.abspath(os.path.dirname(__file__)) + '/../data_set_tf2/mnist.npz'
(train_images, train_labels), (test_images, test_labels) = datasets.mnist.load_data(path=data_path)
# 6万张训练图片,1万张测试图片
train_images = train_images.reshape((60000, 28, 28, 1))
test_images = test_images.reshape((10000, 28, 28, 1))
# 像素值映射到 0 - 1 之间
train_images, test_images = train_images / 255.0, test_images / 255.0
self.train_images, self.train_labels = train_images, train_labels
self.test_images, self.test_labels = test_images, test_labels
class Train:
def __init__(self):
self.cnn = CNN()
self.data = DataSource()
def train(self):
check_path = './ckpt/cp-{epoch:04d}.ckpt'
# period 每隔5epoch保存一次
save_model_cb = tf.keras.callbacks.ModelCheckpoint(check_path, save_weights_only=True, verbose=1, period=5)
self.cnn.model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
self.cnn.model.fit(self.data.train_images, self.data.train_labels, epochs=5, callbacks=[save_model_cb])
test_loss, test_acc = self.cnn.model.evaluate(self.data.test_images, self.data.test_labels)
print("准确率: %.4f,共测试了%d张图片 " % (test_acc, len(self.data.test_labels)))
if __name__ == "__main__":
app = Train()
app.train()
import tensorflow as tf
from PIL import Image
import numpy as np
import os
from train import CNN
'''
python 3.7
tensorflow 2.0.0b0
pillow(PIL) 4.3.0
'''
class Predict(object):
def __init__(self):
latest = tf.train.latest_checkpoint('./ckpt')
self.cnn = CNN()
# 恢复网络权重
self.cnn.model.load_weights(latest)
def predict(self, image_path):
# 以黑白方式读取图片
img = Image.open(image_path).resize((28, 28)).convert('L')
img = np.reshape(img, (28, 28, 1)) / 255.
x = np.array([1 - img])
# API refer: https://keras.io/models/model/
y = self.cnn.model.predict(x)
# 因为x只传入了一张图片,取y[0]即可
# np.argmax()取得最大值的下标,即代表的数字
print(image_path)
print(y[0])
print(' -> Predict digit', np.argmax(y[0]))
if __name__ == "__main__":
app = Predict()
imgdir = '../test_images/'
for f in os.listdir(imgdir):
if f == '.DS_Store':
continue
app.predict(os.path.join(imgdir, f))
这篇博客介绍了如何在 TensorFlow 2.x 中使用卷积神经网络(CNN)对 MNIST 数据集进行手写数字识别。首先,创建了一个简单的CNN模型,包括卷积层、池化层和全连接层。然后,加载并预处理MNIST数据,最后训练模型并在测试集上评估准确率。此外,还提供了预测单张图片的代码示例。
3830

被折叠的 条评论
为什么被折叠?



