struct __wait_queue_head { spinlock_t lock; struct list_head task_list; };
typedef struct __wait_queue_head wait_queue_head_t;
struct completion { unsigned int done; wait_queue_head_t wait; };
void fastcall complete(struct completion *x) { unsigned long flags; spin_lock_irqsave(&x->wait.lock, flags); x->done++; __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE, 1, 0, NULL); spin_unlock_irqrestore(&x->wait.lock, flags); }
completion是一种轻量级的机制,它允许一个线程告诉另一个线程工作已经完成。可以利用下面的宏静态创建completion:
DECLARE_COMPLETION(my_completion);
如果运行时创建completion,则必须采用以下方法动态创建和初始化:
struct compltion my_completion;
init_completion(&my_completion);completion的相关定义包含在kernel/include/linux/completion.h中:
struct completion {
unsigned int done;
wait_queue_head_t wait;
};
#define COMPLETION_INITIALIZER(work) /
{ 0, __WAIT_QUEUE_HEAD_INITIALIZER((work).wait) }#define DECLARE_COMPLETION(work) /
struct completion work = COMPLETION_INITIALIZER(work)static inline void init_completion(struct completion *x)
{
x->done = 0;
init_waitqueue_head(&x->wait);
}
要等待completion,可进行如下调用:
void wait_for_completion(struct completion *c);触发completion事件,调用:
void complete(struct completion *c); //唤醒一个等待线程
void complete_all(struct completion *c);//唤醒所有的等待线程为说明completion的使用方法,将《Linux设备驱动程序》一书中的complete模块的代码摘抄如下:
/*
* complete.c -- the writers awake the readers
*
* Copyright (C) 2003 Alessandro Rubini and Jonathan Corbet
* Copyright (C) 2003 O'Reilly & Associates
*
* The source code in this file can be freely used, adapted,
* and redistributed in source or binary form, so long as an
* acknowledgment appears in derived source files. The citation
* should list that the code comes from the book "Linux Device
* Drivers" by Alessandro Rubini and Jonathan Corbet, published
* by O'Reilly & Associates. No warranty is attached;
* we cannot take responsibility for errors or fitness for use.
*
* $Id: complete.c,v 1.2 2004/09/26 07:02:43 gregkh Exp $
*/#include <linux/module.h>
#include <linux/init.h>#include <linux/sched.h> /* current and everything */
#include <linux/kernel.h> /* printk() */
#include <linux/fs.h> /* everything... */
#include <linux/types.h> /* size_t */
#include <linux/completion.h>MODULE_LICENSE("Dual BSD/GPL");
static int complete_major = 253;//指定主设备号
DECLARE_COMPLETION(comp);
ssize_t complete_read (struct file *filp, char __user *buf, size_t count, loff_t *pos)
{
printk(KERN_DEBUG "process %i (%s) going to sleep/n",
current->pid, current->comm);
wait_for_completion(&comp);
printk(KERN_DEBUG "awoken %i (%s)/n", current->pid, current->comm);
return 0; /* EOF */
}ssize_t complete_write (struct file *filp, const char __user *buf, size_t count,
loff_t *pos)
{
printk(KERN_DEBUG "process %i (%s) awakening the readers.../n",
current->pid, current->comm);
complete(&comp);
return count; /* succeed, to avoid retrial */
}
struct file_operations complete_fops = {
.owner = THIS_MODULE,
.read = complete_read,
.write = complete_write,
};
int complete_init(void)
{
int result;/*
* Register your major, and accept a dynamic number
*/
result = register_chrdev(complete_major, "complete", &complete_fops);
if (result < 0)
return result;
if (complete_major == 0)
complete_major = result; /* dynamic */
return 0;
}void complete_cleanup(void)
{
unregister_chrdev(complete_major, "complete");
}module_init(complete_init);
module_exit(complete_cleanup);
该模块定义了一个简单的completion设备:任何试图从该设备中读取的进程都将等待,直到其他设备写入该设备为止。编译此模块的Makefile如下:
obj-m := complete.o
KDIR := /lib/modules/$(shell uname -r)/build
PWD := $(shell pwd)
default:
$(MAKE) -C $(KDIR) M=$(PWD) modules
clean:
rm -f *.ko *.o *.mod.c在linux终端中执行以下命令,编译生成模块,并进行动态加载。
#make
#mknod completion c 253 0
#insmod complete.ko
再打开三个终端,一个用于读进程:
#cat completion
一个用于写进程:
#echo >completion
另一个查看系统日志:
#tail -f /var/log/messages值得注意的是,当我们使用的complete_all接口时,如果要重复使用一个completion结构,则必须执行INIT_COMPLETION(struct completion c)来重新初始化它。可以在kernel/include/linux/completion.h中找到这个宏的定义:
#define INIT_COMPLETION(x) ((x).done = 0)以下代码对书中原有的代码进行了一番变动,将唤醒接口由原来的complete换成了complete_all,并且为了重复利用completion结构,所有读进程都结束后就重新初始化completion结构,具体代码如下:
#include <linux/module.h>
#include <linux/init.h>#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/fs.h>
#include <linux/types.h>
#include <linux/completion.h>MODULE_LICENSE("Dual BSD/GPL");
#undef KERN_DEBUG
#define KERN_DEBUG "<1>"static int complete_major=253;
static int reader_count = 0;DECLARE_COMPLETION(comp);
ssize_t complete_read (struct file *filp,char __user *buf,size_t count,loff_t *pos)
{
printk(KERN_DEBUG "process %i (%s) going to sleep,waiting for writer/n",current->pid,current->comm);
reader_count++;
printk(KERN_DEBUG "In read ,before comletion: reader count = %d /n",reader_count);
wait_for_completion(&comp);
reader_count--;
printk(KERN_DEBUG "awoken %s (%i) /n",current->comm,current->pid);
printk(KERN_DEBUG "In read,after completion : reader count = %d /n",reader_count);/*如果使用complete_all,则completion结构只能用一次,再次使用它时必须调用此宏进行重新初始化*/
if(reader_count == 0)
INIT_COMPLETION(comp);
return 0;
}ssize_t complete_write(struct file *filp,const char __user *buf,size_t count,loff_t *pos)
{
printk(KERN_DEBUG "process %i (%s) awoking the readers.../n",current->pid,current->comm);
printk(KERN_DEBUG "In write ,before do complete_all : reader count = %d /n",reader_count);
if(reader_count != 0)
complete_all(&comp);
printk(KERN_DEBUG "In write ,after do complete_all : reader count = %d /n",reader_count);
return count;
}struct file_operations complete_fops={
.owner = THIS_MODULE,
.read = complete_read,
.write = complete_write,
};int complete_init(void)
{
int result;result=register_chrdev(complete_major,"complete",&complete_fops);
if(result<0)
return result;
if(complete_major==0)
complete_major =result;printk(KERN_DEBUG "complete driver test init! complete_major=%d/n",complete_major);
printk(KERN_DEBUG "静态初始化completion/n");
return 0;
}void complete_exit(void)
{
unregister_chrdev(complete_major,"complete");
printk(KERN_DEBUG "complete driver is removed/n");
}module_init(complete_init);
module_exit(complete_exit);这里测试步骤和上述一样,只不过需要多打开几个终端来执行多个进程同时读操作。
____________
参考资料:
1.Jonathan Corbet等著,魏永明等译.linux设备驱动程序(第三版)
2.Linux Kernel
#define spin_lock_irqsave(lock, flags) / do { / local_irq_save(flags); / preempt_disable(); / _raw_spin_lock_flags(lock, flags); / } while (0)
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode, int nr_exclusive, int sync, void *key) { struct list_head *tmp, *next; list_for_each_safe(tmp, next, &q->task_list) { wait_queue_t *curr; unsigned flags; curr = list_entry(tmp, wait_queue_t, task_list); flags = curr->flags; if (curr->func(curr, mode, sync, key) && (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive) break; } }
asmlinkage NORET_TYPE void do_exit(long code) { struct task_struct *tsk = current; if (unlikely(in_interrupt())) panic("Aiee, killing interrupt handler!"); if (unlikely(!tsk->pid)) panic("Attempted to kill the idle task!"); if (unlikely(tsk->pid == 1)) panic("Attempted to kill init!"); if (tsk->io_context) exit_io_context(); tsk->flags |= PF_EXITING; del_timer_sync(&tsk->real_timer); if (unlikely(in_atomic())) printk(KERN_INFO "note: %s[%d] exited with preempt_count %d/n", current->comm, current->pid, preempt_count()); profile_exit_task(tsk); if (unlikely(current->ptrace & PT_TRACE_EXIT)) { current->ptrace_message = code; ptrace_notify((PTRACE_EVENT_EXIT << 8) | SIGTRAP); } acct_process(code); __exit_mm(tsk); exit_sem(tsk); __exit_files(tsk); __exit_fs(tsk); exit_namespace(tsk); exit_thread(); if (tsk->signal->leader) disassociate_ctty(1); module_put(tsk->thread_info->exec_domain->module); if (tsk->binfmt) module_put(tsk->binfmt->module); tsk->exit_code = code; exit_notify(tsk); #ifdef CONFIG_NUMA mpol_free(tsk->mempolicy); tsk->mempolicy = NULL; #endif schedule(); BUG(); /* Avoid "noreturn function does return". */ for (;;) ; }
NORET_TYPE void complete_and_exit(struct completion *comp, long code) { if (comp) complete(comp); do_exit(code); }