leetcode 466. Count The Repetitions

本文探讨了LeetCode上的经典问题——计数重复字符串(LeetCode 466),通过深入分析题目要求,提出了一种高效算法来解决在S1中寻找S2重复出现次数的问题,并详细解释了算法原理与实现过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

leetcode 466. Count The Repetitions

题目:

Define S = [s,n] as the string S which consists of n connected strings s. For example, ["abc", 3] =“abcabcabc”.

On the other hand, we define that string s1 can be obtained from string s2 if we can remove some characters from s2 such that it becomes s1. For example, “abc” can be obtained from “abdbec” based on our definition, but it can not be obtained from “acbbe”.

You are given two non-empty strings s1 and s2 (each at most 100 characters long) and two integers 0 ≤ n1 ≤ 106 and 1 ≤ n2 ≤ 106. Now consider the strings S1 and S2, where S1=[s1,n1] and S2=[s2,n2]. Find the maximum integer M such that [S2,M] can be obtained from S1.

Example:

Input:
s1="acb", n1=4
s2="ab", n2=2

Return:
2

解法:

暴力搜索,在s1中持续寻找s2,直到搜索完毕,这种方法可以解决问题,但是时间复杂度会特别高:

class Solution 
{
public:
    int getMaxRepetitions(string s1, int n1, string s2, int n2) 
    {
        int i = 0, count1 = 0, j = 0, count2 = 0;
        while (count1 < n1)
        {
            if (s1[i] == s2[j])
            {
                j++;
                if (j == s2.length())
                {
                    count2++;
                    j = 0;
                }
            }

            i++;
            if (i == s1.length())
            {
                count1++;
                i = 0;
            }
        }
        return count2 / n2;
    }
};

反馈:

在这里插入图片描述


所以考虑换一种方法:

该解法来自于leetcode解题大神:


Fact:
If s2 repeats in S1 R times, then S2 must repeats in S1 R / n2 times.
Conclusion:
We can simply count the repetition of s2 and then divide the count by n2.

How to denote repetition:
We need to scan s1 n1 times. Denote each scanning of s1 as a s1 segment.
After each scanning of i-th s1 segment, we will have

  1. The accumulative count of s2 repeated in this s1 segment.
  2. A nextIndex that s2[nextIndex] is the first letter you’ll be looking for in the next s1 segment.

Suppose s1="abc", s2="bac", nextIndex will be 1; s1="abca", s2="bac", nextIndex will be 2

It is the nextIndex that is the denotation of the repetitive pattern.

Example:

Input:
s1="abacb", n1=6
s2="bcaa", n2=1

Return:
3
                    0  1   2 3 0      1    2 3 0      1    2 3 0  
S1 --------------> abacb | abacb | abacb | abacb | abacb | abacb 
repeatCount ----->    0  |   1   |   1   |   2   |   2   |   3
Increment of 
repeatCount     ->    0  |   1   |   0   |   1   |   0   |   1
nextIndex ------->    2  |   1   |   2   |   1   |   2   |   1

The nextIndex has s2.size() possible values, ranging from 0 to s2.size() - 1. Due to PigeonHole principle, you must find two same nextIndex after scanning s2.size() + 1 s1segments.

Once you meet a nextIndex you’ve met before, you’ll know that the following nextIndexs and increments of repeatCount will repeat a pattern.

So let’s separate the s1 segments into 3 parts:

  1. the prefix part before repetitive pattern
  2. the repetitive part
  3. the suffix part after repetitive pattern (incomplete repetitive pattern remnant)

All you have to do is add up the repeat counts of the 3 parts.


这个题后序有时间我会继续进行研究,确实是一道值得思考的难题。

代码:
class Solution {
public:
    int getMaxRepetitions(string s1, int n1, string s2, int n2) {
        vector<int> repeatCnt(n1 + 1, 0);
        vector<int> nextIdx(n1 + 1, 0);
        int j = 0, cnt = 0;
        for (int k = 1; k <= n1; ++k) {
            for (int i = 0; i < s1.size(); ++i) {
                if (s1[i] == s2[j]) {
                    ++j;
                    if (j == s2.size()) {  
                        j = 0;
                        ++cnt;
                    }
                }
            }
            repeatCnt[k] = cnt;
            nextIdx[k] = j;
            for (int start = 0; start < k; ++start) {
                if (nextIdx[start] == j) {
                    int interval = k - start;
                    int repeat = (n1 - start) / interval;
                    int patternCnt = (repeatCnt[k] - repeatCnt[start]) * repeat;
                    int remainCnt = repeatCnt[start + (n1 - start) % interval];
                    return (patternCnt + remainCnt) / n2;
                }
            }
        }
        return repeatCnt[n1] / n2;
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值