tensorflow实例和执行过程

本文展示了如何利用Numpy生成一个包含噪声的数据集,并使用Matplotlib进行可视化展示。此外,还介绍了如何借助TensorFlow对数据进行进一步处理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt

train_x = np.linspace(-1, 1, 100)
print(len(train_x), 'len(train_x)') # 100 len(train_x)
print(type(train_x), 'type(train_x)') # <class 'numpy.ndarray'> type(train_x)
print(train_x, 'train_x')
'''
[-1.         -0.97979798 -0.95959596 -0.93939394 -0.91919192 -0.8989899
 -0.87878788 -0.85858586 -0.83838384 -0.81818182 -0.7979798  -0.77777778
 -0.75757576 -0.73737374 -0.71717172 -0.6969697  -0.67676768 -0.65656566
 -0.63636364 -0.61616162 -0.5959596  -0.57575758 -0.55555556 -0.53535354
 -0.51515152 -0.49494949 -0.47474747 -0.45454545 -0.43434343 -0.41414141
 -0.39393939 -0.37373737 -0.35353535 -0.33333333 -0.31313131 -0.29292929
 -0.27272727 -0.25252525 -0.23232323 -0.21212121 -0.19191919 -0.17171717
 -0.15151515 -0.13131313 -0.11111111 -0.09090909 -0.07070707 -0.05050505
 -0.03030303 -0.01010101  0.01010101  0.03030303  0.05050505  0.07070707
  0.09090909  0.11111111  0.13131313  0.15151515  0.17171717  0.19191919
  0.21212121  0.23232323  0.25252525  0.27272727  0.29292929  0.31313131
  0.33333333  0.35353535  0.37373737  0.39393939  0.41414141  0.43434343
  0.45454545  0.47474747  0.49494949  0.51515152  0.53535354  0.55555556
  0.57575758  0.5959596   0.61616162  0.63636364  0.65656566  0.67676768
  0.6969697   0.71717172  0.73737374  0.75757576  0.77777778  0.7979798
  0.81818182  0.83838384  0.85858586  0.87878788  0.8989899   0.91919192
  0.93939394  0.95959596  0.97979798  1.        ] train_x
'''

train_y = 2 * train_x + np.random.randn(*train_x.shape) * 0.3
print(train_y, 'train_y')
'''
[-1.97537371 -2.0707564  -2.50659017 -1.74005574 -1.7182739  -1.69568339
 -2.17685749 -1.65533878 -1.81077207 -1.24474538 -1.47408266 -1.78770071
 -2.55034481 -1.09649091 -0.83456965 -1.12748184 -1.60790972 -1.44289216
 -1.11855699 -0.87314642 -1.01221576 -1.42516523 -0.88050722 -1.490482
 -1.72149092 -0.70313579 -0.71962395 -0.98758657 -0.38254856 -0.93820301
 -0.74938492 -0.58497603 -0.87109708 -0.4070504   0.21718465  0.06411439
 -0.10974623 -0.5450655  -0.7198069  -0.36340493 -0.55079501 -0.37930734
 -0.33364772  0.01452697 -0.20080607 -0.1647803  -0.36632996 -0.52541821
 -0.0417619  -0.10118491 -0.26923789  0.23949143  0.15637785  0.03223219
  0.24792483 -0.06720146  0.88348099  0.17352677  0.20654782  0.32752297
 -0.0221242   1.11004173  0.543269    0.77831015  1.12086169  0.22127075
  0.32665351  0.4745935   1.68278184  0.68084667  0.92837247  1.00389364
  0.8130549   0.58524667  1.0982213   1.04425041  0.9826977   1.22104511
  1.74847155  0.93826344  1.4680691   1.68145267  1.52103978  1.9941887
  1.48961483  0.84978128  1.18871248  1.92147679  1.38878515  1.94890224
  1.62084605  1.77141107  1.88397044  1.8813066   1.95174276  1.43820094
  1.89797614  1.85152474  2.05707149  2.17824911] train_y
'''

plt.plot(train_x, train_y, 'ro', label = 'Original data')
plt.legend()
plt.show()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值