LeetCode --- Binary Tree Preorder Traversal

本文深入探讨了二叉树先序遍历的概念,详细介绍了递归和非递归两种遍历方法的实现过程,并通过实例代码帮助读者更好地理解和实践。

LeetCode --- Binary Tree Preorder Traversal

Given a binary tree, return the preorder traversal of its nodes' values.

For example:
Given binary tree {1,#,2,3},

   1
    \
     2
    /
   3

return [1,2,3].

Note: Recursive solution is trivial, could you do it iteratively?

先序遍历二叉树。

递归方法:

void PreOrderTraversal(BiTree *root)
{
    if(!root)
        return;
    cout<<root->data<<endl;
    PreOrderTraversal(root->lchild);
    PreOrderTraversal(root->rchild);
}

非递归遍历:

class Solution {
public:
    vector<int> preorderTraversal(TreeNode *root) {
		vector<int>output;
		vector<TreeNode*>storage;
		output.clear();
		storage.clear();
		if (root == NULL)
		{
			return output;
		}
		TreeNode* temp = root;
		while (temp != NULL || storage.size() > 0)
		{
			while (temp != NULL)
			{
				output.push_back((*temp).val);
				storage.push_back(temp);
				temp = temp->left;
			}
			if (storage.size() > 0)
			{
				TreeNode* top = storage.back();
				storage.pop_back();
				temp = top->right;
			}
		}
		return output;
    }
};

相对于后续遍历,先序遍历二叉树要好理解的多。

(1)如果树为空,则直接返回。

(2)将根节点压入到临时存储栈,进入循环。

(3)取栈顶节点,输出该节点值,然后一直循环,将该节点及其左孩子和孩子的左孩子。。。加入到存储栈。

(4)取栈顶节点,出栈,然后将栈顶节点的右孩子赋值给临时节点temp,如果非空,则继续该节点的步骤(3)。如果为空,则会继续取出栈顶元素,出栈。。。。

(5)直到临时存储栈中没有节点位置,出循环,输出结果

<think>我们将把给定的Java代码转换为Python代码。原Java代码实现了二叉树的前序遍历(递归方式)。 前序遍历的顺序是:根节点 -> 左子树 -> 右子树。 在Python中,我们同样可以定义一个TreeNode类来表示二叉树的节点,然后实现递归的前序遍历。 注意:在Python中,我们通常使用列表(list)来存储遍历结果。 步骤: 1. 定义TreeNode类(如果题目中已经定义,则不需要重复定义,这里为了完整起见,我们给出定义)。 2. 实现一个Solution类,其中包含preorderTraversal方法,该方法接收一个根节点,返回一个整数列表。 3. 在preorderTraversal方法中,我们初始化一个空列表,然后调用递归辅助函数进行遍历。 4. 递归辅助函数preorder将节点和结果列表作为参数,按照前序遍历的顺序将节点值添加到列表中。 考虑到LeetCode的环境,我们假设TreeNode类已经定义好。因此,我们只需要写出Solution类的代码。 下面是转换后的Python代码:</think>### 二叉树前序遍历的 Python 实现 以下是 Java 代码的等效 Python 实现,使用递归方法完成二叉树的前序遍历: ```python from typing import List, Optional # 定义二叉树节点类 class TreeNode: def __init__(self, val=0, left=None, right=None): self.val = val self.left = left self.right = right class Solution: def preorderTraversal(self, root: Optional[TreeNode]) -> List[int]: result = [] # 存储遍历结果的列表 self.preorder(root, result) # 调用递归方法 return result def preorder(self, node: Optional[TreeNode], result: List[int]) -> None: # 递归终止条件:遇到空节点 if node is None: return # 前序遍历步骤: # 1. 访问当前节点(添加到结果列表) result.append(node.val) # 2. 递归遍历左子树 self.preorder(node.left, result) # 3. 递归遍历右子树 self.preorder(node.right, result) ``` ### 代码解释: 1. **TreeNode 类**: - Python 使用类定义二叉树节点 - `__init__` 构造函数初始化节点值、左子节点和右子节点 - 使用 `Optional` 类型表示节点可以为 None 2. **Solution 类**: - `preorderTraversal` 方法: - 初始化空列表 `result` 存储结果 - 调用递归辅助方法 `preorder` - 返回最终结果列表 - `preorder` 递归辅助方法: - **基线条件**:当节点为 None 时直接返回 - **递归过程**: 1. 访问当前节点(添加到结果列表) 2. 递归遍历左子树 3. 递归遍历右子树 3. **前序遍历顺序**: - 根节点 → 左子树 → 右子树 - 示例:对于二叉树 `[1,null,2,3]`: ``` 1 \ 2 / 3 ``` 输出结果为 `[1,2,3]` ### 使用示例: ```python # 构建示例二叉树: # 1 # \ # 2 # / # 3 # 创建节点 n1 = TreeNode(1) n2 = TreeNode(2) n3 = TreeNode(3) # 构建树结构 n1.right = n2 n2.left = n3 # 执行遍历 solution = Solution() print(solution.preorderTraversal(n1)) # 输出: [1, 2, 3] ``` ### 复杂度分析: - **时间复杂度**:O(n),每个节点恰好访问一次 - **空间复杂度**:O(h),其中 h 是二叉树的高度(递归调用栈空间) - 最坏情况(树退化为链表):O(n) - 平衡二叉树情况:O(log n)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值