【PAT】甲级1003 - Emergency(最短路)

本文介绍了一种基于Dijkstra算法的紧急救援路径选择方法,旨在寻找从当前城市到目标城市的最短路径,并在此基础上尽可能多地集结救援队伍。通过实例演示了如何实现这一算法。

题目链接:点击打开题目


1003.Emergency (25)

时间限制
400 ms
内存限制
65536 kB
代码长度限制
16000 B
判题程序
Standard
作者
CHEN, Yue
As an emergency rescue team leader of a city, you are given a special map of your country. The map shows several scattered cities connected by some roads. Amount of rescue teams in each city and the length of each road between any pair of cities are marked on the map. When there is an emergency call to you from some other city, your job is to lead your men to the place as quickly as possible, and at the mean time, call up as many hands on the way as possible.

Input

Each input file contains one test case. For each test case, the first line contains 4 positive integers: N (<= 500) - the number of cities (and the cities are numbered from 0 to N-1), M - the number of roads, C1 and C2 - the cities that you are currently in and that you must save, respectively. The next line contains N integers, where the i-th integer is the number of rescue teams in the i-th city. Then M lines follow, each describes a road with three integers c1, c2 and L, which are the pair of cities connected by a road and the length of that road, respectively. It is guaranteed that there exists at least one path from C1 to C2.

Output

For each test case, print in one line two numbers: the number of different shortest paths between C1 and C2, and the maximum amount of rescue teams you can possibly gather.
All the numbers in a line must be separated by exactly one space, and there is no extra space allowed at the end of a line.

Sample Input
5 6 0 2
1 2 1 5 3
0 1 1
0 2 2
0 3 1
1 2 1
2 4 1
3 4 1
Sample Output
2 4


套一下地杰斯特拉,注意统计人数和路径条数就行。


代码如下:

#include<cstdio>
#include<cstring>
#include<string>
#include<stack>
#include<queue>
#include<iostream>
#include<algorithm>
#include<cmath>
#include<vector>
using namespace std;
typedef long long LL;
#define CLR(a,b) memset(a,b,sizeof(a))
#define INF 0x3f3f3f3f
#define PI acos(-1.0)
#define MAXSIZE 500
int ant[MAXSIZE+5];     //当地人数 
int dis[MAXSIZE+5];     //最短距离 
int people[MAXSIZE+5];      //保证最短距离下的最多救人数 
int st,endd;        //起点终点 
int n,m;
int cnt[MAXSIZE+5];     //路径条数 
struct Road
{
    int to;
    int length;
};
struct Ans
{
    int pos;
    int length;
    int people;
    bool friend operator < (Ans a,Ans b)
    {
        if (a.length == b.length)
            return a.people < b.people;
        return a.length > b.length;
    }
};
vector<Road> Edge[MAXSIZE+5];
void init()
{
    for (int i = 0 ; i <= MAXSIZE ; i++)
    {
        dis[i] = INF;
        people[i] = cnt[i] = 0;
    }
}
void dijkstra()
{
    init();
    dis[st] = 0;
    people[st] = ant[st];
    cnt[st] = 1;
    priority_queue<Ans> Q;
    Ans pr,ne;
    pr.pos = st;
    pr.length = 0;
    pr.people = ant[st];
    Q.push(pr);
    bool vis[MAXSIZE+5] = {false};
    while (!Q.empty())
    {
        pr = Q.top();
        Q.pop();
        if (pr.pos == endd)
            break;
        if (vis[pr.pos])
            continue;
        else
            vis[pr.pos] = true;
//      cout << pr.pos << endl;
        for (int i = 0 ; i < Edge[pr.pos].size() ; i++)
        {
            int to = Edge[pr.pos][i].to;
            if (vis[to])
                continue;
            ne.pos = to;
            ne.length = Edge[pr.pos][i].length + pr.length;
            ne.people = ant[to] + pr.people;
            if (ne.length < dis[to])
            {
                dis[to] = ne.length;
                people[to] = ne.people;
                Q.push(ne);
                cnt[to] = cnt[pr.pos];
            }
            else if (ne.length == dis[to])
            {
                if (ne.people > people[to])
                {
                    people[to] = ne.people;
                    Q.push(ne);
                }
                cnt[to] += cnt[pr.pos];
            }
        }
    }
    cout << cnt[endd] << ' ' << people[endd] << endl;
}
int main()
{
    Road p;
    cin >> n >> m >> st >> endd;
    st++;
    endd++;
    for (int i = 1 ; i <= n ; i++)
        cin >> ant[i];
    for (int i = 1 ; i <= m ; i++)
    {
        int x,y,z;
        cin >> x >> y >> z;
        x++;
        y++;
        p.to = y;
        p.length = z;
        Edge[x].push_back(p);
        p.to = x;
        Edge[y].push_back(p);
    }
    dijkstra();
    return 0;
}

/*

5 6 0 2
1 2 1 5 3
0 1 1
0 2 1
0 3 1
1 2 1
2 4 1
3 4 1

6 8 0 5
1 1 1 1 1 1
0 1 1
0 2 1
0 3 1
0 4 1
5 1 1
5 2 1
5 3 1
5 4 1

*/
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值