大数据之路(二)——MapReduce 编程案例(倒排索引)

数据形式如下

在这里插入图片描述

需要得到如下结果:

例如:hello这个单词在a.txt中出现4次,b.txt中出现4次,c.txt中出现三次
在这里插入图片描述
即统计出每一个单词在每一篇文档中出现的次数。
思路:maptask在运行前就已经被分配好要处理哪一个分片,要处理的哪一个切片就包含在map(key,value,context)的context中,所以只需要改写响应的context方法就行。在这里插入图片描述

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.SequenceFileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;

public class IndexStepOne {

	public static class IndexStepOneMapper extends Mapper<LongWritable, Text, Text, IntWritable> {

		// 产生 <hello-文件名,1> 
		@Override
		protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
			// 从输入切片信息中获取当前正在处理的一行数据所属的文件
			FileSplit inputSplit = (FileSplit) context.getInputSplit();
			String fileName = inputSplit.getPath().getName();

			String[] words = value.toString().split(" ");
			for (String w : words) {
				// 将"单词-文件名"作为key,1作为value,输出
				context.write(new Text(w + "-" + fileName), new IntWritable(1));
			}

		}

	}

	public static class IndexStepOneReducer extends Reducer<Text, IntWritable, Text, IntWritable> {

		@Override
		protected void reduce(Text key, Iterable<IntWritable> values,
				Reducer<Text, IntWritable, Text, IntWritable>.Context context)
				throws IOException, InterruptedException {

			int count = 0;
			for (IntWritable value : values) {
				count += value.get();
			}

			context.write(key, new IntWritable(count));

		}

	}

经过以上mapreduce处理得到一个中间文件,文件结果如下:
在这里插入图片描述
我们还需对中间结果进行下一步处理;

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import cn.edu360.mr.flow.FlowBean;
import cn.edu360.mr.flow.ProvincePartitioner;

public class IndexStepTwo {

	public static class IndexStepTwoMapper extends Mapper<LongWritable, Text, Text, Text> {

		@Override
		protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
			String[] split = value.toString().split("-");
			
			context.write(new Text(split[0]), new Text(split[1].replaceAll("\t", "-->")));
			
		}

	}

	public static class IndexStepTwoReducer extends Reducer<Text, Text, Text, Text> {

		// 一组数据:  <hello,a.txt-->4> <hello,b.txt-->4> <hello,c.txt-->4>
		@Override
		protected void reduce(Text key, Iterable<Text> values,Context context)
				throws IOException, InterruptedException {
			// stringbuffer是线程安全的,stringbuilder是非线程安全的,在不涉及线程安全的场景下,stringbuilder更快
			StringBuilder sb = new StringBuilder();
			
			for (Text value : values) {
				sb.append(value.toString()).append("\t");
			}
			
			context.write(key, new Text(sb.toString()));
			

		}

	}
	
	
	
	public static void main(String[] args) throws Exception{
		
		Configuration conf = new Configuration(); // 默认只加载core-default.xml core-site.xml
		
		Job job = Job.getInstance(conf);

		job.setJarByClass(IndexStepTwo.class);

		job.setMapperClass(IndexStepTwoMapper.class);
		job.setReducerClass(IndexStepTwoReducer.class);

		job.setNumReduceTasks(1);

		job.setMapOutputKeyClass(Text.class);
		job.setMapOutputValueClass(Text.class);
		
		
		job.setOutputKeyClass(Text.class);
		job.setOutputValueClass(Text.class);

		FileInputFormat.setInputPaths(job, new Path("F:\\mrdata\\index\\out1"));
		FileOutputFormat.setOutputPath(job, new Path("F:\\mrdata\\index\\out2"));

		job.waitForCompletion(true);
		
	}
	

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值