Keras手写数字识别

导入模块

from keras.datasets import mnist
from scipy import signal
import matplotlib.pyplot as plt
from keras.utils import np_utils
from keras.models import Sequential
from keras.layers import Dense, Activation, Flatten
from keras.layers.convolutional import Conv2D, MaxPooling2D
import tensorflow as tf

加载数据集

(X_train, y_train),(X_test, y_test) = mnist.load_data()

更改输入数据集结构为一维向量

X_train = X_train.reshape(X_train.shape[0],num_pixels).astype('float32')
X_train.shape
X_test = X_test.reshape(X_test.shape[0],num_pixels).astype('float32')
X_test.shape

归一化输入像素

# normalize inputs from 0-255 to 0-1
X_train = X_train / 255.0
X_test = X_test / 255.0

将标签用one-hot形式编码

# 将十个数字用一维向量编码
y_train = np_utils.to_categorical(y_train)
y_test = np_utils.to_categorical(y_test)

建立全连接层神经网络

num_classes = 10
model = Sequential()
model.add(Dense(num_pixels, input_dim=num_pixels, activation='relu'))
model.add(Dense(num_classes, activation='softmax'))
model.compile(loss='categorical_crossentropy',optimizer='adam',metrics=['accuracy'])

训练模型,查看模型情况

history = model.fit(X_train,y_train, validation_data=(X_test, y_test),epochs=10,batch_size=128,verbose=True)
model.summary()

使用卷积神经网络模型

输入图片形式

# 卷积神经网络
X_train = X_train.reshape(X_train.shape[0],28,28,1).astype('float32')
X_test = X_test.reshape(X_test.shape[0],28,28,1).astype('float32')

卷积神经网络模型

model = Sequential()
model.add(Conv2D(32 ,3 ,input_shape=(28,28,1),activation='relu'))
model.add(Conv2D(32 ,3 ,activation='relu'))
model.add(MaxPooling2D(pool_size=2))
model.add(Conv2D(64 ,3 ,activation='relu'))
model.add(Conv2D(64 ,3 ,activation='relu'))
model.add(MaxPooling2D(pool_size=2))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dense(num_classes, activation='softmax'))
model.compile(loss='categorical_crossentropy',optimizer='adam',metrics=['accuracy'])

训练模型,查看正确率和模型情况

history = model.fit(X_train,y_train, validation_data=(X_test, y_test),epochs=10,batch_size=128,verbose=True)
score = model.evaluate(X_test, y_test, verbose=0)
print("Large CNN Error: %.2f%%" %(100-score[1]*100))
model.summary()

 

好的,我可以为你提供一个使用Keras实现手写数字识别的简单示例。 首先,你需要安装Keras和NumPy库。然后,你可以使用MNIST数据集来训练模型,该数据集包含大量手写数字图像。 下面是一个使用Keras实现手写数字识别的示例代码: ```python import keras from keras.datasets import mnist from keras.models import Sequential from keras.layers import Dense, Dropout, Flatten from keras.layers import Conv2D, MaxPooling2D # 加载MNIST数据集 (x_train, y_train), (x_test, y_test) = mnist.load_data() # 将图像数据转换为4D张量 x_train = x_train.reshape(x_train.shape[0], 28, 28, 1) x_test = x_test.reshape(x_test.shape[0], 28, 28, 1) input_shape = (28, 28, 1) # 将图像数据转换为浮点数并归一化 x_train = x_train.astype('float32') x_test = x_test.astype('float32') x_train /= 255 x_test /= 255 # 将标签转换为One-hot编码 y_train = keras.utils.to_categorical(y_train, 10) y_test = keras.utils.to_categorical(y_test, 10) # 构建模型 model = Sequential() model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=input_shape)) model.add(Conv2D(64, (3, 3), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(128, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(10, activation='softmax')) # 编译模型 model.compile(loss=keras.losses.categorical_crossentropy, optimizer=keras.optimizers.Adadelta(), metrics=['accuracy']) # 训练模型 batch_size = 128 epochs = 10 model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, verbose=1, validation_data=(x_test, y_test)) # 评估模型 score = model.evaluate(x_test, y_test, verbose=0) print('Test loss:', score[0]) print('Test accuracy:', score[1]) ``` 这个示例代码使用了一个卷积神经网络来训练模型,这种网络结构能够有效地识别图像中的特征。你可以根据你的需求对模型进行调整,比如增加更多的卷积层、池化层或全连接层等,以提高模型的准确率。 当你运行这个代码时,模型将会被训练并评估。在训练完成后,模型将对测试集中的图像进行预测,并输出测试准确率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值