【DCIC】task1

import pandas as pd 
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
df = pd.read_csv('taxiGps20200618.csv')
df
RUNNING_STATUSGPS_SPEEDDRIVING_DIRECTIONGPS_DATELONGITUDELATITUDECARNO
090.002020-06-18 11:17:07118.15331524.48422149550f5b7501cb7c204cf7f7831748dd
110.002020-06-18 11:17:23118.15419524.48391649550f5b7501cb7c204cf7f7831748dd
280.002020-06-18 16:23:53118.15521024.4530452263295e0de66305ebb2e5c40c841214
310.02182020-06-18 16:53:51118.10598324.5887006d815f5a600bd79e8065e55b089b0cac
410.02182020-06-18 16:53:27118.10598324.5887006d815f5a600bd79e8065e55b089b0cac
510.002020-06-18 11:17:54118.15370824.48417149550f5b7501cb7c204cf7f7831748dd
610.002020-06-18 12:36:00118.15350624.48416049550f5b7501cb7c204cf7f7831748dd
710.002020-06-18 11:18:24118.15357524.48415349550f5b7501cb7c204cf7f7831748dd
810.002020-06-18 12:37:03118.15350624.48416049550f5b7501cb7c204cf7f7831748dd
910.002020-06-18 11:18:55118.15357524.48415349550f5b7501cb7c204cf7f7831748dd
1090.002020-06-18 11:20:02118.15357524.48415349550f5b7501cb7c204cf7f7831748dd
1180.002020-06-18 16:23:53118.15521024.4530452263295e0de66305ebb2e5c40c841214
1210.002020-06-18 16:21:350.0000000.00000027887e2a10652e5869310b4f1bf340f4
1310.002020-06-18 16:25:330.0000000.00000027887e2a10652e5869310b4f1bf340f4
1410.002020-06-18 16:27:010.0000000.00000027887e2a10652e5869310b4f1bf340f4
1510.002020-06-18 10:19:000.0000000.00000027887e2a10652e5869310b4f1bf340f4
1610.002020-06-18 16:24:330.0000000.00000027887e2a10652e5869310b4f1bf340f4
1710.002020-06-18 16:22:520.0000000.00000027887e2a10652e5869310b4f1bf340f4
1810.002020-06-18 16:23:570.0000000.00000027887e2a10652e5869310b4f1bf340f4
1910.002020-06-18 16:26:330.0000000.00000027887e2a10652e5869310b4f1bf340f4
2010.002020-06-18 10:19:300.0000000.00000027887e2a10652e5869310b4f1bf340f4
2110.002020-06-18 16:26:030.0000000.00000027887e2a10652e5869310b4f1bf340f4
2210.002020-06-18 16:21:290.0000000.00000027887e2a10652e5869310b4f1bf340f4
2310.002020-06-18 16:22:050.0000000.00000027887e2a10652e5869310b4f1bf340f4
2410.002020-06-18 16:24:030.0000000.00000027887e2a10652e5869310b4f1bf340f4
2510.002020-06-18 10:17:550.0000000.00000027887e2a10652e5869310b4f1bf340f4
2610.002020-06-18 16:22:350.0000000.00000027887e2a10652e5869310b4f1bf340f4
2710.002020-06-18 10:18:300.0000000.00000027887e2a10652e5869310b4f1bf340f4
2810.002020-06-18 16:25:030.0000000.00000027887e2a10652e5869310b4f1bf340f4
2910.02192020-06-18 20:11:22118.02770824.5768009d7c1e9850aa9e80d9b6df2c12f3be0c
........................
2225944410.002020-06-18 10:10:500.0000000.00000027887e2a10652e5869310b4f1bf340f4
2225944510.002020-06-18 10:12:210.0000000.00000027887e2a10652e5869310b4f1bf340f4
2225944610.002020-06-18 10:13:550.0000000.00000027887e2a10652e5869310b4f1bf340f4
2225944710.002020-06-18 10:13:370.0000000.00000027887e2a10652e5869310b4f1bf340f4
2225944810.002020-06-18 10:16:550.0000000.00000027887e2a10652e5869310b4f1bf340f4
2225944910.002020-06-18 10:05:160.0000000.00000027887e2a10652e5869310b4f1bf340f4
2225945010.002020-06-18 10:10:200.0000000.00000027887e2a10652e5869310b4f1bf340f4
2225945110.002020-06-18 10:08:200.0000000.00000027887e2a10652e5869310b4f1bf340f4
2225945210.002020-06-18 10:09:500.0000000.00000027887e2a10652e5869310b4f1bf340f4
2225945310.002020-06-18 10:11:200.0000000.00000027887e2a10652e5869310b4f1bf340f4
2225945410.002020-06-18 10:14:550.0000000.00000027887e2a10652e5869310b4f1bf340f4
2225945510.002020-06-18 10:16:250.0000000.00000027887e2a10652e5869310b4f1bf340f4
2225945610.002020-06-18 10:05:520.0000000.00000027887e2a10652e5869310b4f1bf340f4
2225945710.002020-06-18 10:05:220.0000000.00000027887e2a10652e5869310b4f1bf340f4
2225945810.002020-06-18 10:07:500.0000000.00000027887e2a10652e5869310b4f1bf340f4
2225945910.002020-06-18 10:06:350.0000000.00000027887e2a10652e5869310b4f1bf340f4
2225946010.002020-06-18 10:12:510.0000000.00000027887e2a10652e5869310b4f1bf340f4
2225946110.002020-06-18 10:11:500.0000000.00000027887e2a10652e5869310b4f1bf340f4
2225946210.002020-06-18 10:15:550.0000000.00000027887e2a10652e5869310b4f1bf340f4
2225946310.002020-06-18 10:06:160.0000000.00000027887e2a10652e5869310b4f1bf340f4
2225946410.002020-06-18 10:06:220.0000000.00000027887e2a10652e5869310b4f1bf340f4
2225946510.002020-06-18 10:13:250.0000000.00000027887e2a10652e5869310b4f1bf340f4
2225946610.002020-06-18 10:08:150.0000000.00000027887e2a10652e5869310b4f1bf340f4
2225946710.002020-06-18 10:07:200.0000000.00000027887e2a10652e5869310b4f1bf340f4
2225946810.002020-06-18 10:07:150.0000000.00000027887e2a10652e5869310b4f1bf340f4
2225946910.002020-06-18 10:08:500.0000000.00000027887e2a10652e5869310b4f1bf340f4
2225947010.002020-06-18 10:14:250.0000000.00000027887e2a10652e5869310b4f1bf340f4
2225947110.002020-06-18 10:17:250.0000000.00000027887e2a10652e5869310b4f1bf340f4
2225947210.002020-06-18 10:15:250.0000000.00000027887e2a10652e5869310b4f1bf340f4
2225947380.002020-06-18 08:50:17118.15519624.452791d4ff8b3b82659a913adc37eab5c73c3d

22259474 rows × 7 columns

df['DRIVING_DIRECTION'].value_counts()
0      2599647
254     152899
252     145160
74      139602
72      131728
270     120226
256     114278
250     110893
272     108768
258     105968
90      104624
264     103306
92      103157
84      102944
76      102777
268     101334
266     101128
262      99976
260      99433
274      99382
276      98322
244      97674
94       96767
70       95441
248      94830
294      92827
170      91701
82       91467
322      91081
16       90672
        ...   
41       25740
145      25727
217      25521
131      25430
49       25388
45       25367
59       25264
119      25235
143      25202
137      25133
53       25085
33       25006
311      24903
61       24871
309      24813
139      24778
113      24728
47       24217
31       24181
29       24040
307      23991
111      23937
127      23729
35       23671
103      23610
43       23377
107      22666
109      22369
37       21588
360      13294
Name: DRIVING_DIRECTION, Length: 361, dtype: int64
df.describe().round(2)
RUNNING_STATUSGPS_SPEEDDRIVING_DIRECTIONLONGITUDELATITUDE
count22259474.0022259474.0022259474.0022259474.0022259474.00
mean1.5916.52162.57117.9124.47
std1.5221.21112.965.011.05
min0.000.000.000.000.00
25%1.000.0063.00118.1024.48
50%1.007.10166.00118.1224.50
75%2.0028.90260.00118.1524.52
max41.001866.00360.00128.6036.83
df[df.LATITUDE >= 90]
RUNNING_STATUSGPS_SPEEDDRIVING_DIRECTIONGPS_DATELONGITUDELATITUDECARNO
df[df.LATITUDE <= 20]['LATITUDE'].unique()
array([ 0.      , 18.735893, 16.720076, 18.477973, 19.545486, 18.189498,
       17.827593, 19.173525, 18.357385, 19.698856, 18.326236, 18.322025,
       18.33303 , 18.344588, 18.351545, 18.38139 , 18.381683, 18.314838,
       18.319148, 18.317458, 18.301231, 18.304743, 18.30703 , 19.540326,
       18.310495, 18.312541, 18.338078, 18.337708, 18.34453 ])



打卡任务
统计巡游车GPS数据在20190603中包含多少俩出租车🚖?
统计网约车GPS数据在20190603中包含多少俩网约车🚗?
统计巡游车订单数据在20190603中上车经纬度的最大最小值?
统计网约车订单数据集在20190603中下车经纬度最常见的位置?
假设经度+维度,各保留三维有效数字组合得到具体位置
小提示:可以将经纬度拼接到一起进行统计
df.columns
Index(['RUNNING_STATUS', 'GPS_SPEED', 'DRIVING_DIRECTION', 'GPS_DATE',
       'LONGITUDE', 'LATITUDE', 'CARNO'],
      dtype='object')
len(df.CARNO.unique())
6647
df.describe().round(3)
RUNNING_STATUSGPS_SPEEDDRIVING_DIRECTIONLONGITUDELATITUDE
count2.225947e+072.225947e+072.225947e+072.225947e+072.225947e+07
mean1.592000e+001.652300e+011.625740e+021.179080e+022.446800e+01
std1.524000e+002.120900e+011.129550e+025.007000e+001.045000e+00
min0.000000e+000.000000e+000.000000e+000.000000e+000.000000e+00
25%1.000000e+000.000000e+006.300000e+011.180970e+022.447900e+01
50%1.000000e+007.100000e+001.660000e+021.181230e+022.449600e+01
75%2.000000e+002.890000e+012.600000e+021.181490e+022.452300e+01
max4.100000e+011.866000e+033.600000e+021.286000e+023.682800e+01
sns.kdeplot(df.LATITUDE.value_counts())
<matplotlib.axes._subplots.AxesSubplot at 0x1c389fade10>

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-0wVeEGj1-1599817423523)(output_11_1.png)]


0.000000     40050
24.533688     5519
24.539665     5079
24.516658     4829
24.690826     4671
24.467685     4442
24.525995     4216
24.474758     3924
24.477215     3823
24.501808     3626
24.510193     3610
24.492511     3574
24.668578     3563
24.480398     3532
24.690756     3509
24.471203     3461
24.480805     3425
24.481183     3297
24.481280     3287
24.512276     3265
24.508940     3246
24.490398     3236
24.519206     3196
24.511568     3194
24.499750     3115
24.512401     3087
24.483943     3075
24.512973     3062
24.690510     3046
24.499226     3029
             ...  
24.896530        1
25.194982        1
25.067691        1
24.521939        1
25.122210        1
25.843908        1
24.568814        1
25.018415        1
24.761613        1
24.774230        1
24.534484        1
25.050253        1
24.790970        1
24.712845        1
24.737576        1
24.408328        1
24.603914        1
26.004841        1
24.871766        1
24.754435        1
24.362590        1
24.706326        1
24.779881        1
24.653016        1
24.739900        1
23.698791        1
24.565734        1
24.425187        1
24.708650        1
24.745930        1
Name: LATITUDE, Length: 292120, dtype: int64
location = df[['LONGITUDE','LATITUDE']].round(3).astype('str')
location = location[(location.LONGITUDE != 0)|(location.LATITUDE != 0)]
location['loc'] = location.LATITUDE + ':' + location.LONGITUDE
num_loc = location['loc'].value_counts()
pd.DataFrame(num_loc).reset_index()['index'].str.split(':',expand = True)
01
024.638118.071
124.691118.141
224.547118.147
324.539118.129
424.538118.129
524.489118.155
624.547118.146
724.639118.071
824.482118.116
924.485118.117
1024.481118.116
1124.49118.149
1224.599118.109
1324.479118.115
140.00.0
1524.546118.147
1624.474118.178
1724.475118.114
1824.477118.107
1924.512118.137
2024.547118.144
2124.537118.127
2224.548118.146
2324.48118.116
2424.538118.128
2524.472118.174
2624.486118.131
2724.638118.072
2824.472118.11
2924.502118.128
.........
6575424.631117.724
6575523.614117.367
6575624.966118.381
6575724.457118.101
6575824.522118.023
6575924.661118.115
6576024.525118.082
6576124.183117.584
6576224.454118.06
6576324.674118.053
6576424.506118.24
6576524.518117.437
6576626.683118.16
6576727.336117.481
6576824.564117.593
6576924.442118.177
6577024.581118.11
6577125.848119.518
6577224.801118.128
6577324.25117.659
6577424.706117.786
6577524.716118.07
6577624.781118.45
6577724.748118.42
6577824.958118.076
6577923.75116.633
6578024.839118.427
6578124.694118.535
6578224.354118.123
6578324.551117.896

65784 rows × 2 columns


内容概要:本文介绍了一个基于MATLAB实现的无人机三维路径规划项目,采用蚁群算法(ACO)与多层感知机(MLP)相结合的混合模型(ACO-MLP)。该模型通过三维环境离散化建模,利用ACO进行全局路径搜索,并引入MLP对环境特征进行自适应学习与启发因子优化,实现路径的动态调整与多目标优化。项目解决了高维空间建模、动态障碍规避、局部最优陷阱、算法实时性及多目标权衡等关键技术难题,结合并行计算与参数自适应机制,提升了路径规划的智能性、安全性和工程适用性。文中提供了详细的模型架构、核心算法流程及MATLAB代码示例,涵盖空间建模、信息素更新、MLP训练与融合优化等关键步骤。; 适合人群:具备一定MATLAB编程基础,熟悉智能优化算法与神经网络的高校学生、科研人员及从事无人机路径规划相关工作的工程师;适合从事智能无人系统、自动驾驶、机器人导航等领域的研究人员; 使用场景及目标:①应用于复杂三维环境下的无人机路径规划,如城市物流、灾害救援、军事侦察等场景;②实现飞行安全、能耗优化、路径平滑与实时避障等多目标协同优化;③为智能无人系统的自主决策与环境适应能力提供算法支持; 阅读建议:此资源结合理论模型与MATLAB实践,建议读者在理解ACO与MLP基本原理的基础上,结合代码示例进行仿真调试,重点关注ACO-MLP融合机制、多目标优化函数设计及参数自适应策略的实现,以深入掌握混合智能算法在工程中的应用方法。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值