互信息图像配准

图像配准是为了解决两幅不同来源的图像匹配问题。例如,楼外的一颗大树开花了,小明路过觉得好看,就拿相机拍了一张照片。结果回屋拷出来一看不满意,于是小明从窗户又拍了一张。两张照片拍摄角度和距离不一样(也即存在投影变换),同时照片细节也有差异(第二次拍摄的时候起风了,树叶子都有轻微的位移)。那么问题来了:怎么样让计算机把两幅图片中的树,像素对像素的给匹配起来?

互信息配准算法是解决此问题较好的方法之一。它是利用信息论中的熵思想。我们知道,熵是对随机变量不确定度的衡量。一个离散随机变量X的熵可以表示为:

H(X)= x p(x)log 2 p(x) 

那么对于联合分布f(X,Y) ,当随机变量Y的取值确定以后,由于相关性的存在,X的不确定性就会降低,熵也随之减小。因此,可以定义条件熵

H(X|Y)= x,y p(x,y)log 2 p(x|y) 

可以证明,X的条件熵是一定小于其自身的熵,也即
H(X|Y)H(X) 

啥时候等号成立呢?当X和Y完全独立的时候,有兴趣的同学可以推导一下,很简单。从物理意义上也比较好理解:当X和Y完全独立,我们知道Y的值,和随机变量X没有一点关系,当然X的不确定度就没有减小。所以此时条件熵和熵相等。

有了条件熵之后,就可以定义随机变量X  Y  的互信息,它的公式为:

I(X,Y)= x,y p(x,y)log 2 p(x,y)p(x)p(y)  

这个公式不太直观,不过如果这么解释就易懂多了:
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值