# -*- coding:utf-8 -*- import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.linear_model import LinearRegression data = pd.read_csv('height.vs.temperature.csv') # print(data.head()) # print(data.columns) #Index(['height', 'temperature'], dtype='object') plt.figure(figsize=(16,8)) plt.scatter(data['height'], data['temperature'], c ='black') plt.xlabel("Height -Temp ") plt.ylabel("Temp") plt.show() X = data['height'].values.reshape(-1,1) y = data['temperature'].values.reshape(-1,1) res = LinearRegression() print(res.fit(X,y)) #LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False) # print('a = {:.5}'.format(res.coef_[0][0])) # print('b = {:.5}'.format(res.intercept_[0])) # # print("线性模型为: Y = {:.5}X + {:.5} ".format(res.coef_[0][0], res.intercept_[0])) """ a = -0.0065695 b = 12.719 线性模型为: Y = -0.0065695X + 12.719 """ pre = res.predict(X) plt.figure(figsize=(16,8)) plt.scatter(data['height'], data['temperature'], c ='black') plt.plot(data['height'], pre,c ='blue', linewidth=2) plt.xlabel("Height -Temp ") plt.ylabel("Temp") plt.show() pres = res.predict([[6000]]) #[[-6.99009493]] print('高度为3000米的话,气温为{:.5}度'.format( pres[0][0]) ) #高度为3000米的话,气温为-26.699度
线性回归实例学习
最新推荐文章于 2021-11-27 14:06:14 发布