布隆过滤器(Bloom Filter)在网络爬虫中的应用

本文深入探讨了布隆过滤器在解决网络爬虫中的重复网址过滤问题时的优势与局限性,详细解释了其工作原理,并提供了一个实际的应用场景。布隆过滤器利用哈希函数将网址映射到位阵列,通过位操作快速判断网址是否已访问过,从而显著提升爬虫效率,同时减少资源消耗。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.  维基百科

    a:基本思想

如果想判断一个元素是不是在一个集合里,一般想到的是将所有元素保存起来,然后通过比较确定。链表散列表(又叫哈希表,Hash table)等等数据结构都是这种思路,。但是随着集合中元素的增加,我们需要的存储空间越来越大。同时检索速度也越来越慢,上述三种结构的检索时间复杂度分别为O(n),O(\log n),O(n/k)

布隆过滤器的原理是,当一个元素被加入集合时,通过K个Hash函数将这个元素映射成一个位阵列(Bit array)中的K个点,把它们置为1。检索时,我们只要看看这些点是不是都是1就(大约)知道集合中有没有它了:如果这些点有任何一个0,则被检索元素一定不在;如果都是1,则被检索元素很可能在。这就是布隆过滤器的基本思想。

   b:优点

相比于其它的数据结构,布隆过滤器在空间和时间方面都有巨大的优势。布隆过滤器存储空间和插入/查询时间都是常数(O(k))。另外, Hash函数相互之间没有关系,方便由硬件并行实现。布隆过滤器不需要存储元素本身,在某些对保密要求非常严格的场合有优势。

布隆过滤器可以表示全集,其它任何数据结构都不能;

km相同,使用同一组Hash函数的两个布隆过滤器的交并差运算可以使用位操作进行。

   c:缺点

但是布隆过滤器的缺点和优点一样明显。误算率是其中之一。随着存入的元素数量增加,误算率随之增加。但是如果元素数量太少,则使用散列表足矣。

另外,一般情况下不能从布隆过滤器中删除元素. 我们很容易想到把位列阵变成整数数组,每插入一个元素相应的计数器加1, 这样删除元素时将计数器减掉就可以了。然而要保证安全的删除元素并非如此简单。首先我们必须保证删除的元素的确在布隆过滤器里面. 这一点单凭这个过滤器是无法保证的。另外计数器回绕也会造成问题。

2. 在网络爬虫中的应用

隆过滤器的优劣主要与哈希函数的质量相关,而且哈希函数之间的相关度越小越好,每个哈希函数本身的计算过程不要太复杂,不然会影响效率。理想情况下是取k个完全不相关的哈希函数,在不是很严格情况下,也可以通过一个哈希函数的参数变化产生k个不同的哈希函数,比如将i1ik)作为参数参与哈希函数的计算。

不同的应用场景,哈希函数的设计方法不同。在网络爬虫的设计中,一般采用MD5算法构造哈希函数。把要过滤的地址哈希到一片很大的位地址空间。


1、把要过滤的地址哈希到一片很大的位地址空间,关键是把字符串的每一位字符根据一定的规则哈希到某个地址,并把内容设为True


2、当一个网址达到时,只需要根据同样的规则进行哈希到各个位,看是否每一位都为True,若是则说明这个地址是要过滤的,否则不是

 

如下图:123




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值