动态规划入门1

本文介绍了一种用于寻找给定序列中最大和子序列的算法,包括输入格式、输出要求以及具体实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题:

Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.

输入:

The first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines follow, each line starts with a number N(1<=N<=100000), then N integers followed(all the integers are between -1000 and 1000).

输出:

For each test case, you should output two lines. The first line is "Case #:", # means the number of the test case. The second line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence. If there are more than one result, output the first one. Output a blank line between two cases.

Sample Input
2 5 6 -1 5 4 -7 7 0 6 -1 1 -6 7 -5

Sample Output
Case 1: 14 1 4 Case 2: 7 1 6

题意:求最大和的最长序列,输出这些数的总和和序列的起始点和终点

代码:

#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
int main()
{
int nase,n,num,start,end,temp,i,j,a[100010],sum,max;


scanf("%d",&nase);


for(i=1;i<=nase;i++)
{
max=-1111;
sum=0;
start=end=temp=1;
scanf("%d",&n);
for(j=1;j<=n;j++)
{
scanf("%d",&num);
sum+=num;
if(sum>max)
{
max=sum;
start=temp;
end=j;
}
if(sum<0)
{
sum=0;
temp=j+1;
}
}
printf("Case %d:\n",i);
printf("%d %d %d\n",max,start,end);
if(i!=nase)
printf("\n");
}
return 0;
}








评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值