[LintCode]Segment Tree Query 线段树的查询

本文介绍了如何通过段树结构实现区间查询最大值的功能,并提供了示例代码来帮助理解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

For an integer array (index from 0 to n-1, where n is the size of this array), in the corresponding SegmentTree, each node stores an extra attribute max to denote the maximum number in the interval of the array (index from start to end).

Design a query method with three parameters root, start and end, find the maximum number in the interval [start, end] by the given root of segment tree.

Example
For array [1, 4, 2, 3], the corresponding Segment Tree is:

              [0, 3, max=4]
             /             \
      [0,1,max=4]        [2,3,max=3]
      /         \        /         \
[0,0,max=1] [1,1,max=4] [2,2,max=2], [3,3,max=3]

query(root, 1, 1), return 4
query(root, 1, 2), return 4
query(root, 2, 3), return 3
query(root, 0, 2), return 4

Note
It is much easier to understand this problem if you finished Segment Tree Build first.

/**
 * Definition of SegmentTreeNode:
 * public class SegmentTreeNode {
 *     public int start, end, max;
 *     public SegmentTreeNode left, right;
 *     public SegmentTreeNode(int start, int end, int max) {
 *         this.start = start;
 *         this.end = end;
 *         this.max = max
 *         this.left = this.right = null;
 *     }
 * }
 */
public class Solution {
    /**
     *@param root, start, end: The root of segment tree and 
     *                         an segment / interval
     *@return: The maximum number in the interval [start, end]
     */
    public int query(SegmentTreeNode root, int start, int end) {
        if(null == root) return Integer.MIN_VALUE;
        if(root.start > end || root.end < start || start > end) return Integer.MIN_VALUE;
        if(root.start >= start && root.end <= end) return root.max;

        int mid = root.start + (root.end - root.start)/2;
        int leftmax = query(root.left, start, Math.min(mid, end));
        int rightmax = query(root.right, Math.max(mid, start), end);
        return Math.max(leftmax, rightmax);
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值