Given a 2D binary matrix filled with 0’s and 1’s, find the largest square containing all 1’s and return its area.
样例
For example, given the following matrix:
1 0 1 0 0
1 0 1 1 1
1 1 1 1 1
1 0 0 1 0
Return 4.
解法:动态规划
参考:http://blog.youkuaiyun.com/brucehb/article/details/46384411
dp[i][j]表示以节点matrix[i][j]为正方形右下角可构成的最大正方形的边长。
当matrix[i][j]为1时
dp[i][j] = min(dp[i-1][j-1], dp[i][j-1], dp[i-1][j]) + 1。
当matrix[i][j]为0时
dp[i][j] = 0.
public class Solution {
/**
* @param matrix: a matrix of 0 and 1
* @return: an integer
*/
public int maxSquare(int[][] matrix) {
if(null == matrix || matrix.length == 0 || matrix[0].length == 0) return 0;
int [][] dp = new int[matrix.length][matrix[0].length];
int maxsize = 0;
for(int i = 0; i < matrix.length; i++) {
if(matrix[i][0] == 1){
dp[i][0] = 1;
maxsize = 1;
}
}
for(int i = 0; i < matrix[0].length; i++) {
if(matrix[0][i] == 1) {
dp[0][i] = 1;
maxsize = 1;
}
}
for(int i = 1; i < matrix.length; i++) {
for(int j = 1; j < matrix[0].length; j++) {
if(matrix[i][j] == 1) {
dp[i][j] = Math.min(Math.min(dp[i-1][j-1], dp[i-1][j]), dp[i][j-1]) + 1;
maxsize = Math.max(maxsize, dp[i][j]);
}
}
}
return maxsize * maxsize;
}
}