聚集索引和非聚集索引的区别

本文通过字典比喻解释了数据库中聚集索引和非聚集索引的区别。聚集索引按一定规则存储记录,逻辑与物理连续;非聚集索引则作为单独目录,指向实际数据位置。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原文地址:http://www.cnblogs.com/flashicp/archive/2007/05/08/739245.html

1.聚集索引:

        汉语字典的正文本身就是一个聚集索引。比如,我们要查“安”字,就会很自然地翻开字典的前几页,因为“安”的拼音是“an”,而按照拼音排序汉字的字典是以英文字母“a”开头并以“z”结尾的,那么“安”字就自然地排在字典的前部。如果您翻完了所有以“a”开头的部分仍然找不到这个字,那么就说明您的字典中没有这个字;同样的,如果查“张”字,那您也会将您的字典翻到最后部分,因为“张”的拼音是“zhang”。也就是说,字典的正文部分本身就是一个目录,您不需要再去查其他目录来找到您需要找的内容。正文内容本身就是一种按照一定规则排列的目录称为“聚集索引”。

总结:聚集索引存储记录是逻辑上和物理上都连续存在,而非聚集索引是逻辑上的连续,物理存储并不连续。

2.非聚集索引:

       如果您认识某个字,您可以快速地从自动中查到这个字。但您也可能会遇到您不认识的字,不知道它的发音,这时候,您就不能按照刚才的方法找到您要查的字,而需要去根据“偏旁部首”查到您要找的字,然后根据这个字后的页码直接翻到某页来找到您要找的字。但您结合“部首目录”和“检字表”而查到的字的排序并不是真正的正文的排序方法,比如您查“张”字,我们可以看到在查部首之后的检字表中“张”的页码是672页,检字表中“张”的上面是“驰”字,但页码却是63页,“张”的下面是“弩”字,页面是390页。很显然,这些字并不是真正的分别位于“张”字的上下方,现在您看到的连续的“驰、张、弩”三字实际上就是他们在非聚集索引中的排序,是字典正文中的字在非聚集索引中的映射。我们可以通过这种方式来找到您所需要的字,但它需要两个过程,先找到目录中的结果,然后再翻到您所需要的页码。我们把这种目录纯粹是目录,正文纯粹是正文的排序方式称为“非聚集索引”。

总结:每个表只能有一个聚集索引,因为目录只能按照一种方法进行排序。而非聚集索引一个表可以存在多个。


参考:http://database.51cto.com/art/201104/257104.htm

<think>好的,用户想了解聚集索引非聚集索引区别。我需要先回忆一下数据库索引的基础知识,确保自己理解正确。首先,聚集索引应该表的物理存储顺序有关,而非聚集索引则是独立的结构。 接下来,我应该整理两者的定义。聚集索引决定了数据在磁盘上的排列方式,所以每个表只能有一个。而非聚集索引是单独的,可以有多个。需要确认这个点是否正确,比如SQL Server确实是这样,但其他数据库比如MySQL的InnoDB中,聚集索引键,如果没有键则会选其他唯一索引,所以可能有所不同,但用户可能指的是通用情况,还是以常见数据库为例。 然后要比较存储结构。聚集索引的叶子节点直接存数据行,而非聚集索引的叶子节点存的是指向数据的指针或者聚集键。这里可能需要解释清楚指针聚集键的区别,比如如果表有聚集索引非聚集索引会使用聚集键作为指针,否则可能使用行ID。 性能方面,聚集索引在范围查询时效率高,因为数据物理连续,而非聚集索引可能需要回表,导致随机IO。但点查询的话,两者都可能很快,不过聚集索引直接找到数据,而非聚集索引需要二次查找。 维护成本方面,聚集索引的插入更新可能更耗时,因为要调整数据的位置,而非聚集索引只需要更新索引结构,不影响数据存储顺序。但如果有多个非聚集索引,更新数据时也需要维护这些索引,所以维护成本可能更高。 还需要提到每个表只能有一个聚集索引,而非聚集索引可以有多个。这也是重要的区别。 可能用户是数据库初学者,或者正在设计表结构,需要优化查询性能。他们可能想了解如何选择索引类型,或者为什么查询速度不同。所以例子会有帮助,比如用订单表,聚集索引在订单日期,这样按日期范围查询快;非聚集索引在客户ID,查询特定客户时需要回表查找。 需要确保语言简洁,结构清晰,分点说明。同时要避免专业术语过多,用容易理解的中文解释。可能还需要提醒使用场景,比如聚集索引适合经常需要范围查询的列,非聚集索引适合常用于查询条件的列,但更新频繁的表可能会有更多索引维护开销。 最后检查是否有错误,比如是否每个表真的只能有一个聚集索引,不同数据库是否有差异,但为了通用性,还是按常见情况说明。确保LaTeX格式正确,比如索引结构用行内公式表示,比如B+树结构。</think>聚集索引非聚集索引是数据库索引的两种核心类型,区别体现在存储结构、数据组织方式查询效率上。以下是逐步对比分析: --- ### 一、定义对比 1. **聚集索引(Clustered Index)** $$ \text{索引键值的顺序 = 数据行的物理存储顺序} $$ 每个表**只能有一个**聚集索引,因为它直接决定了数据的物理排列。 2. **非聚集索引(Non-Clustered Index)** $$ \text{索引键值的顺序 ≠ 数据行的物理存储顺序} $$ 索引数据分离存储,一个表可创建**多个非聚集索引**。 --- ### 二、存储结构差异 | 特性 | 聚集索引 | 非聚集索引 | |---------------------|-----------------------------------|-----------------------------------| | **叶子节点内容** | 直接存储数据行 | 存储指向数据行的指针(或聚集索引键) | | **额外存储空间** | 不需要额外空间(索引即数据) | 需要独立存储空间(索引与数据分离) | | **逻辑示意图** | ![聚集索引结构] | ![非聚集索引结构] | --- ### 三、查询性能对比 1. **范围查询(如`WHERE date BETWEEN ...`)** - 聚集索引:数据物理连续,顺序读取快($O(\log n) + \text{顺序扫描}$)。 - 非聚集索引:需多次跳转,可能触发随机I/O($O(\log n) + \text{随机读取}$)。 2. **点查询(如`WHERE id = 5`)** - 两者效率接近(均通过B+树快速定位,$O(\log n)$),但非聚集索引需额外回表查数据。 --- ### 四、维护成本对比 1. **插入/更新数据** - 聚集索引:可能触发数据页分裂,影响性能。 - 非聚集索引:仅需更新索引结构,不影响数据物理顺序。 2. **删除数据** - 聚集索引:删除后可能导致页合并。 - 非聚集索引:只需标记索引条目为无效。 --- ### 五、适用场景 | 场景 | 推荐索引类型 | 原因 | |---------------------|-----------------------|------------------------------------| | 键或频繁范围查询列 | 聚集索引 | 利用物理连续性加速范围查询 | | 高频筛选的非键列 | 非聚集索引 | 快速定位数据,避免全表扫描 | | 频繁更新的列 | 谨慎创建非聚集索引 | 多个索引会增加写操作开销 | --- ### 六、示例说明 假设有一个订单表`Orders`: ```sql CREATE TABLE Orders ( OrderID INT PRIMARY KEY, -- 聚集索引(默认键) CustomerID INT, OrderDate DATE, TotalAmount DECIMAL ); ``` - **场景1**:按`OrderDate`范围查询 ```sql SELECT * FROM Orders WHERE OrderDate BETWEEN '2023-01-01' AND '2023-12-31'; ``` 若在`OrderDate`上建聚集索引,数据按日期物理排序,查询更快。 - **场景2**:按`CustomerID`查找 ```sql SELECT * FROM Orders WHERE CustomerID = 1001; ``` 在`CustomerID`上建非聚集索引,通过索引快速定位,再回表获取完整数据。 --- ### 七、总结 | 维度 | 聚集索引 | 非聚集索引 | |-------------|----------------------------------|----------------------------------| | **物理存储** | 数据按索引排序存储 | 独立存储,数据无序 | | **数量限制** | 每表仅1个 | 每表可多个 | | **查询效率** | 范围查询快,避免回表 | 点查询快,但需回表 | | **适用列** | 键、高频范围查询列 | 高频筛选的非键列 |
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值