问题描述:
Bean-eating is an interesting game, everyone owns an M*N matrix, which is filled with different qualities beans. Meantime, there is only one bean in any 1*1 grid. Now you want to eat the beans and collect the qualities, but everyone must obey by the following
rules: if you eat the bean at the coordinate(x, y), you can’t eat the beans anyway at the coordinates listed (if exiting): (x, y-1), (x, y+1), and the both rows whose abscissas are x-1 and x+1.
Now, how much qualities can you eat and then get ?
Input
There are a few cases. In each case, there are two integer M (row number) and N (column number). The next M lines each contain N integers, representing the qualities of the beans. We can make sure that the quality of bean isn't beyond 1000, and 1<=M*N<=200000.
Output
For each case, you just output the MAX qualities you can eat and then get.
Sample Input
4 6 11 0 7 5 13 9 78 4 81 6 22 4 1 40 9 34 16 10 11 22 0 33 39 6Sample Output
242
题目题意:题目给了我们一个矩阵,每格有一个值,我们要在题目要求情况下(满足俩个要求),求出最总和。
取了(x,y) 则(x,y-1) (x,y+1)不能取,x-1行和x+1行不能取。
题目分析:我们先处理去每一行可以得到的最大值(求最大非连续区间),然后保存起来,按照行的规则,又是一个最大非连续区间。
dp[i]=max(dp[i-1]+a[i],dp[i-2]);
代码如下:
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
using namespace std;
const int maxn=2*1e5+100;
int clomn[maxn],row[maxn],dp[maxn];
int main()
{
int n,m;
while (scanf("%d%d",&n,&m)!=EOF) {
memset (dp,0,sizeof (dp));
for (int i=1;i<=n;i++) {
for (int j=1;j<=m;j++) {
scanf("%d",&clomn[j]);
}
dp[1]=clomn[1];
for (int j=2;j<=m;j++) {
dp[j]=max(dp[j-2]+clomn[j],dp[j-1]);
}
row[i]=dp[m];
}
dp[1]=row[1];
for (int i=2;i<=n;i++)
dp[i]=max(dp[i-1],dp[i-2]+row[i]);
printf("%d\n",dp[n]);
}
return 0;
}