Description
Given a set of n integers: A={a1, a2,..., an}, we define a function d(A) as below:
Your task is to calculate d(A).![]()
Input
The input consists of T(<=30) test cases. The number of test cases (T) is given in the first line of the input.
Each test case contains two lines. The first line is an integer n(2<=n<=50000). The second line contains n integers: a1, a2, ..., an. (|ai| <= 10000).There is an empty line after each case.
Each test case contains two lines. The first line is an integer n(2<=n<=50000). The second line contains n integers: a1, a2, ..., an. (|ai| <= 10000).There is an empty line after each case.
Output
Print exactly one line for each test case. The line should contain the integer d(A).
Sample Input
1 10 1 -1 2 2 3 -3 4 -4 5 -5
Sample Output
13
Hint
In the sample, we choose {2,2,3,-3,4} and {5}, then we can get the answer.
Huge input,scanf is recommended.
Huge input,scanf is recommended.
求一个序列的无交叉的两端序列最大字段和问题。
思路:先从左向右求出各段最大和,再从右向左,求出各段最大和,然后两段无交叉相加求出最大值即可
#include <iostream>
#include <stdio.h>
#include <string>
#include <cstring>
#include <algorithm>
#include <cmath>
#define N 55555
#define MIN -9999999
using namespace std;
int T;
int n;
int a[N];
int num[N];
int ans;
int main()
{
while(~scanf("%d",&T))
{
while(T--)
{
scanf("%d",&n);
int sum=0;
int f=MIN;
memset(num,0,sizeof num);
for(int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
sum+=a[i];
if(sum>f)
f=sum;
num[i]=f;
if(sum<0)
sum=0;
}
sum=0;
f=MIN;
ans=MIN;
for(int i=n;i>1;i--)
{
sum+=a[i];
if(sum>f)
f=sum;
if(ans<num[i-1]+f)
ans=num[i-1]+f;
if(sum<0)
sum=0;
}
printf("%d\n",ans);
}
}
return 0;
}