HDU 1711 Number Sequence

本文介绍了一个基于KMP算法的问题解决方案,该问题是寻找两个数列间首个完全匹配子序列的起始位置。通过详细的代码实现,展示了如何高效地解决此类字符串匹配问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Number Sequence

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 11789    Accepted Submission(s): 5380


Problem Description
Given two sequences of numbers : a[1], a[2], ...... , a[N], and b[1], b[2], ...... , b[M] (1 <= M <= 10000, 1 <= N <= 1000000). Your task is to find a number K which make a[K] = b[1], a[K + 1] = b[2], ...... , a[K + M - 1] = b[M]. If there are more than one K exist, output the smallest one.
 

Input
The first line of input is a number T which indicate the number of cases. Each case contains three lines. The first line is two numbers N and M (1 <= M <= 10000, 1 <= N <= 1000000). The second line contains N integers which indicate a[1], a[2], ...... , a[N]. The third line contains M integers which indicate b[1], b[2], ...... , b[M]. All integers are in the range of [-1000000, 1000000].
 

Output
For each test case, you should output one line which only contain K described above. If no such K exists, output -1 instead.
 

Sample Input
2 13 5 1 2 1 2 3 1 2 3 1 3 2 1 2 1 2 3 1 3 13 5 1 2 1 2 3 1 2 3 1 3 2 1 2 1 2 3 2 1
 

Sample Output
6 -1
 


裸地KMP,字符匹配,求出第一个匹配数字的位置

#include <iostream>
#include<stdio.h>
#include<string>
#include<cstring>
#include<algorithm>
#define N 1000010
using namespace std;

int f[N];
int a[N],b[N];
int n,m;
int main()
{
    int ca;
    while(~scanf("%d",&ca))
    {
        while(ca--)
        {
           scanf("%d %d",&n,&m);
           for(int i=0;i<n;i++)
           scanf("%d",&a[i]);
           for(int i=0;i<m;i++)
           scanf("%d",&b[i]);

            int j=-1;
            f[0]=-1;
            for(int i=1;i<m;i++)
            {
                while(j>=0&&b[j+1]!=b[i])
                   j=f[j];
                   if(b[j+1]==b[i])
                   j++;
                   f[i]=j;
            }
            j=-1;

            int ans=-1;
            for(int i=0;i<n;i++)
            {
                while(j>=0&&b[j+1]!=a[i])
                  j=f[j];
                  if(b[j+1]==a[i])
                  j++;
                  if(j==m-1)
                  {
                      ans=i-m+1+1;
                      break;
                  }
            }
            if(ans==-1)
            {
                printf("-1\n");
            }
            else
            printf("%d\n",ans);
        }
    }
    return 0;
}






评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值