ImportError: numpy.core.multiarray failed to import

本文介绍了一个在运行FasterRCNN源代码时遇到的错误:“ImportError:numpy.core.multiarrayfailedtoimport”,并给出了详细的错误信息及解决办法,即更新numpy版本。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

执行FasterRCNN源代码出现“ImportError: numpy.core.multiarray failed to import”错误

RuntimeError: module compiled against API version 0xa but this version of numpy is 0x7
Traceback (most recent call last):
  File "./faster_rcnn/train_net.py", line 23, in <module>
    from lib.fast_rcnn.train import get_training_roidb, train_net
  File "./faster_rcnn/../lib/__init__.py", line 1, in <module>
    import fast_rcnn
  File "./faster_rcnn/../lib/fast_rcnn/__init__.py", line 9, in <module>
    from . import train
  File "./faster_rcnn/../lib/fast_rcnn/train.py", line 11, in <module>
    import tensorflow as tf
  File "/usr/lib/python2.7/site-packages/tensorflow/__init__.py", line 24, in <module>
    from tensorflow.python import *
  File "/usr/lib/python2.7/site-packages/tensorflow/python/__init__.py", line 49, in <module>
    from tensorflow.python import pywrap_tensorflow
  File "/usr/lib/python2.7/site-packages/tensorflow/python/pywrap_tensorflow.py", line 52, in <module>
    raise ImportError(msg)
ImportError: Traceback (most recent call last):
  File "/usr/lib/python2.7/site-packages/tensorflow/python/pywrap_tensorflow.py", line 41, in <module>
    from tensorflow.python.pywrap_tensorflow_internal import *
  File "/usr/lib/python2.7/site-packages/tensorflow/python/pywrap_tensorflow_internal.py", line 28, in <module>
    _pywrap_tensorflow_internal = swig_import_helper()
  File "/usr/lib/python2.7/site-packages/tensorflow/python/pywrap_tensorflow_internal.py", line 24, in swig_import_helper
    _mod = imp.load_module('_pywrap_tensorflow_internal', fp, pathname, description)
ImportError: numpy.core.multiarray failed to import

解决方法:

更新numpy版本,删除老的版本

pip install -U numpy 


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值