F - Max Sum (动态规划+数学推导证明)

这篇博客介绍如何利用动态规划求解给定序列的最大子序列和,并提供了一种固定右边界,逐次更新左边界的方法。文章通过示例解释了思路,包括如何计算每个分组的最大值以及如何找到子序列的起始和结束位置。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

F - Max Sum

 

Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14. 

Input

The first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines follow, each line starts with a number N(1<=N<=100000), then N integers followed(all the integers are between -1000 and 1000). 

Output

For each test case, you should output two lines. The first line is "Case #:", # means the number of the test case. The second line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence. If there are more than one result, output the first one. Output a blank line between two cases. 

Sample Input

2
5 6 -1 5 4 -7
7 0 6 -1 1 -6 7 -5

Sampl

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值