快速傅立叶变换(FFT)

本文深入浅出地介绍了快速傅立叶变换(FFT)的基础知识,包括DFT(离散傅立叶变换)的概念、作用及其实现原理。通过实例展示了DFT如何将信号从时域转换到频域,并分析了FFT为何能加速DFT的计算。此外,还探讨了DFT的周期性和与傅里叶变换、Z变换的关系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

学习算法中偶尔看到了有关傅里叶变换的题目  然后找了一些整理一下当作储备知识

本文是从最基础的知识开始讲解,力求用最通俗易懂的文字将问题将的通俗易懂,大神勿喷,多多指教啊,虽然说是从零学习FFT,但是基本的数学知识还是要有的,sincos,等。

       FFT(快速傅里叶变换)其本质就是DFT,只不过可以快速的计算出DFT结果,要弄懂FFT,必须先弄懂DFTDFT(DiscreteFourier Transform) 离散傅里叶变换的缩写,咱们先来详细讨论DFT,因为DFT懂了之后,FFT就容易的多了

DFT(FFT)的作用:可以将信号从时域变换到频域,而且时域和频域都是离散的,通俗的说,可以求出一个信号由哪些正弦波叠加而成,求出的结果就是这些正弦波的幅度和相位,我们音乐播放器上面显示的就是音乐fft之后不同频率正弦波的幅度,就像下面这张图片:

里面的柱状高度就是正弦波的幅度

     那么为什么可以求出正弦波的幅度呢,这里就要说一下信号的相关性了,我们也可以利用信号的相关性检测信号波中是否含有某个频率的信号波:把一个待检测信号波乘以另一个信号波,个新的信号波,再把这个新的信号波所有的点进行相加,从相加的结果就可以判断出这两个信号的相似程度,比如下图:

 

        上图中a,b图是待检测信号,cd3个周期的正弦信号,很显然a图含有正弦波,e=a*c,将e图的各点相加,很显然值是正的,这就说明a图含频率为3的正弦波,f=b*d,显然将f图中各点相加结果约等于0了,说明b图不含有周期为3的正弦波,这就是dft的原理,也就是离散傅里叶变换的原理,其实就是这么简单,只不过dft将待检测信号和很多不同频率的正弦波和余弦波相乘,也就是进行了信号相关性检测,从而可以计算出信号中含有的正弦波的幅度,若含有此频率的正弦波,那么幅值不为0,若不含有此正弦波,那么幅值为0,那么幅值是如何计算出来的呢,幅值就是上面e图和f图各点之和(若是连续信号的话就是两信号乘积求积分了,。。额,不说积分,抽象了)

下面来看个具体的例子:


上面图一即为待检测信号,也就是将进行DFT变换的信号,将它分成16个离散的点,图2是一个频率为1的正弦波,也分成16个点,将对应的点相乘,得到图3,再将图3的各个点的幅值相加,结果为10.06,也就是说图1中的图像含有图2的正弦波,此时用到的dft点数就为16,10/(N/2)=10/8=1.25,含有的频率为1的正弦波的幅度就是1.25,以此类推,若要求是否含有频率为2的正弦波,将图1和频率为2的正弦波相乘再求和,。。。。

至于为什么要除以N/2,数字信号处理里面有讲,我就不多说了

     接下来就是dft的实现了

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值