数据挖掘笔记-关联规则-FPGrowth-简单实现

FP-Growth算法作为Apriori的优化,通过频繁模式树(FPTree)减少对事务数据库的扫描次数,降低时间和空间复杂度。在关联分析中,FP-Growth比Apriori更高效,尤其适用于海量数据。为了进一步优化,可以采用数据库划分或数据采样等方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

由于Apriori算法需要多次扫描事务数据库,需要生成候选项集,大大增加了时间与空间的代价,FP Growth算法利用了巧妙的数据结构,大大降低了Aproir挖掘算法的代价,它不需要不断得生成候选项目队列和不断得扫描整个数据库进行比对。为了达到这样的效果,它采用了一种简洁的数据结构,叫做frequent-pattern tree(频繁模式树)。FP-growth算法比Apriori算法快一个数量级,在空间复杂度方面也比Apriori也有数量级级别的优化。对于海量数据,FP-growth的时空复杂度仍然很高,可以采用的改进方法包括数据库划分,数据采样等等。

FPGrowth算法的介绍与实例说明可以参考下面这个连接,里面讲的很详细。
http://hi.baidu.com/nefzpohtpndhovr/item/9d5c371ba2dbdc0ed1d66dca
Apriori和FP-Tree都是寻找频繁项集的算法,后面根据频繁项集产生关联规则都是一样的,就不再这里重复了。
FPGrowth算法Java简单实现:
public class FPGrowthBuilder {

	/** 最小支持度 */
	private int minSupport = 2;
	/** 频繁集集合*/
	private List<List<ItemSet>> frequencies = new ArrayList<List<ItemSet>>();
	
	//创建头表
	public List<FPTreeNode> buildHeadTables(Data data) {
		//统计各项出现频次
		Map<String, Integer> map = new HashMap<String, Integer>();
		for (Instance instance : data.getInstances()) {
			for (String value : instance.getValues()) {
				Integer mValue = map.ge
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值