原文链接:https://zhuanlan.zhihu.com/p/350837279
为了尊重原作者,这边只放一个链接,只做简单介绍,感兴趣的请去原文博客。
PyTorchImageModels,简称 timm,是一个巨大的 PyTorch 代码集合,旨在将各种 SOTA 模型整合在一起,并具有复现 ImageNet 训练结果的能力。虽然模型架构是 timm 的重点,但它还包括许多数据增强 (data augmentations)、正则化技术 (regularization techniques)、优化器 (optimizers) 和学习率策略 (learning rate schedulers) 的实现。
timm作者是,Ross Wightman ,他的github留言挺好的“Always learning, constantly curious. Building ML/AI systems, watching loss curves.”
PyTorch Image Models
All model architecture families include variants with pretrained weights. There are specific model variants without any weights, it is NOT a bug. Help training new or better weights is always appreciated.
- Aggregating Nested Transformers - https://arxiv.org/abs/2105.12723
- BEiT - https://arxiv.org/abs/2106.08254
- Big Transfer ResNetV2 (BiT) - https://arxiv.org/abs/1912.11370
- Bottleneck Transformers - https://arxiv.org/abs/2101.11605
- CaiT (Class-Attention in Image Transformers) - https://arxiv.org/abs/2103.17239
- CoaT (Co-Scale Conv-Attentional Image Transformers) - https://arxiv.org/abs/2104.06399
- CoAtNet (Convolution and Attention) - https://arxiv.org/abs/2106.04803
- ConvNeXt - https://arxiv.org/abs/2201.03545
- ConvNeXt-V2 - http://arxiv.org/abs/2301.00808
- ConViT (Soft Convolutional Inductive Biases Vision Transformers)- https://arxiv.org/abs/2103.1

最低0.47元/天 解锁文章
2696

被折叠的 条评论
为什么被折叠?



