LeetCode Implement strStr(kmp或者BM)

本文介绍使用KMP算法和BM算法实现字符串搜索的方法。通过两种算法的实现,可以高效地查找一个字符串是否包含另一个字符串。文章提供了详细的代码实现,并解释了每一步的逻辑。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题意:求一字符串在另一字符串的中的索引

思路:kmp

代码如下:

public class Solution {
    private int[] kmp_table(String s)
    {
        int[] next = new int[s.length()];

        next[0] = -1;

        for (int i = 1; i < s.length(); i++)
        {
            int j = next[i - 1];
            while (j > -1 && s.charAt(j) != s.charAt(i - 1))
            {
                j = next[j];
            }

            next[i] = j + 1;
        }

        return next;
    }

    private int kmp_search(String text, String pattern)
    {
        int[] next = kmp_table(pattern);
        int match_start = 0, pattern_start = 0;

        while (match_start + pattern_start < text.length())
        {
            while (match_start + pattern_start < text.length() && text.charAt(match_start + pattern_start) == pattern.charAt(pattern_start))
            {
                if (++pattern_start == pattern.length()) return match_start;
            }

            match_start += pattern_start - next[pattern_start];
            pattern_start = next[pattern_start] > -1 ? next[pattern_start] : 0;
        }

        return -1;
    }

    public int strStr(String haystack, String needle)
    {
        if (haystack.compareTo(needle) == 0) return 0;
        if (needle.isEmpty()) return 0;
        if (haystack.length() < needle.length()) return -1;

        return kmp_search(haystack, needle);
    }
}

解法二

public class Solution
{
    private int[] kmp_table(String s)
    {
        int[] next = new int[s.length()];

        next[0] = -1;
        int j = -1, i = 0;

        while (i < s.length())
        {
            while (j > -1 && s.charAt(j) != s.charAt(i))
            {
                j = next[j];
            }

            j++;
            i++;
            if (i < s.length() && j < s.length())
            {
                if (s.charAt(i) == s.charAt(j))
                {
                    next[i] = next[j];
                }
                else
                {
                    next[i] = j;
                }
            }
        }


        return next;
    }

    private int kmp_search(String text, String pattern)
    {
        int[] next = kmp_table(pattern);
        int match_start = 0, pattern_start = 0;

        while (match_start < text.length())
        {
            while (pattern_start > -1 && text.charAt(match_start) != pattern.charAt(pattern_start))
            {
                pattern_start = next[pattern_start];
            }

            pattern_start++;
            match_start++;
            if (pattern_start == pattern.length())
            {
                return match_start - pattern_start;
            }
        }

        return -1;
    }

    public int strStr(String haystack, String needle)
    {
        if (haystack.compareTo(needle) == 0) return 0;
        if (needle.isEmpty()) return 0;
        if (haystack.length() < needle.length()) return -1;


        return kmp_search(haystack, needle);
    }
}


解法三:bm算法

public class Solution
{
    private Map<Character, Integer> skip_;
    private int[] suffix_;

    private void build_skip_table(String s)
    {
        skip_ = new HashMap<>();
        for (int i = 0; i < s.length(); i++)
        {
            skip_.put(s.charAt(i), i);
        }
    }

    private int[] compute_bm_prefix(String s)
    {
        if (s.length() == 0) return null;

        int[] prefix = new int[s.length()];
        prefix[0] = 0;
        int k = 0;
        for (int i = 1; i < s.length(); i++)
        {
            while (k > 0 && s.charAt(k) != s.charAt(i))
            {
                k = prefix[k - 1];
            }

            if (s.charAt(k) == s.charAt(i)) k++;
            prefix[i] = k;
        }

        return prefix;
    }

    private void build_suffix_table(String s)
    {
        if (s.length() == 0) return ;

        int[] prefix = compute_bm_prefix(s);

        String reverse_s = new StringBuilder(s).reverse().toString();
        int[]  reverse_prefix = compute_bm_prefix(reverse_s);

        suffix_ = new int[s.length() + 1];
        for (int i = 0; i <= s.length(); i++)
        {
            suffix_[i] = s.length() - prefix[s.length() - 1];
        }

        for (int i = 0; i < reverse_s.length(); i++)
        {
            int index = reverse_s.length() - reverse_prefix[i];
            int shift = i - reverse_prefix[i] + 1;
            if (suffix_[index] > shift)
            {
                suffix_[index] = shift;
            }
        }
    }

    private int do_search(String text, String pattern)
    {
        build_skip_table(pattern);
        build_suffix_table(pattern);

        int index_end = text.length() - pattern.length();
        int i = 0;
        while (i <= index_end)
        {
            int j = pattern.length();
            while (text.charAt(i +  j - 1) == pattern.charAt(j - 1))
            {
                j--;
                if (j == 0) return i;
            }

            int k = skip_.containsKey(text.charAt(j - 1)) ? skip_.get(pattern.charAt(j - 1)) : -1;
            int m = j - 1 - k;
            if (k < j && m > suffix_[j])
            {
                i += m;
            }
            else
            {
                i += suffix_[j];
            }
        }

        return -1;
    }

    public int strStr(String haystack, String needle)
    {
        if (haystack.compareTo(needle) == 0) return 0;
        if (needle.isEmpty()) return 0;
        if (haystack.length() < needle.length()) return -1;


        return do_search(haystack, needle);
    }
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

kgduu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值