Python YOLOv3 查看神经网络结构

本文介绍了如何使用Python查看YOLOv3的神经网络架构,包括加载预训练的80类别模型和自定义训练的10类别模型。在训练自定义模型时,需要注意网络结构和data.names的匹配,避免出现形状不匹配的错误。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

下载地址 https://github.com/wizyoung/YOLOv3_TensorFlow

Python  YOLOv3 查看神经网络架构

import tensorflow as tf
import numpy as np
reader = tf.train.NewCheckpointReader('./yolov3.ckpt')
 #tf.train.NewCheckpointReader
var_to_shape_map = reader.get_variable_to_shape_map()
for key in var_to_shape_map:
  print("tensor_name: ", key,len(reader.get_tensor(key)),reader.get_tensor(key).shape)
  #print(reader.get_tensor(key))

下载别人的预训练的神经网络,训练完自己的神经网络,需要加载自己的网络模型和对应自己的data.names或coco.names不修改自己的代码会导致:Assign requires shapes of both tensors to match. lhs shape= [255] rhs shape= [45]

下载别人的预训练的神经网络的网络结构:80个classes

wu@wu-X555LF:~/YOLOv3_TensorFlow-master/data/darknet_weights$ python test.py 
('yolov3/darknet53_body/Conv_10/BatchNorm/beta', 128, (128,))
('yolov3/darknet53_body/Conv_30/BatchNorm/moving_mean', 512, (512,))
('yolov3/yolov3_head/Conv_17/BatchNorm/moving_variance', 256, (256,))
('yolov3/yolov3_head/Conv_21/BatchNorm/beta', 256, (256,))
('yolov3/darknet53_body/Conv_31/BatchNorm/gamma', 256, (256,))
('yolov3/darknet53_body/Conv_39/BatchNorm/beta', 256, (256,))
('yolov3/darknet53_body/Conv_5/BatchNorm/moving_mean', 64, (64,))
('yolov3/darknet53_body/Conv_49/BatchNorm/gamma', 1024, (1024,))
('yolov3/darknet53_body/Conv_33/BatchNorm/gamma', 256, (256,))
('yolov3/yolov3_head/Conv/BatchNorm/moving_variance', 512, (512,))
('yolov3/yolov3_head/Conv_18/BatchNorm/moving_mean', 128, (128,))
('yolov3/darknet53_body/Conv_3/BatchNorm/gamma', 64, (64,))
('yolov3/darknet53_body/Conv_27/weights', 1, (1, 1, 512, 256))
('yolov3/darknet53_body/Conv_20/BatchNorm/gamma', 128, (128,))
('yolov3/darknet53_body/Conv_47/BatchNorm/moving_variance', 1024, (1024,))
('yolov3/yolov3_head/Conv_4/weights', 1, (1, 1, 1024, 512))
('yolov3/yolov3_head/Conv_19/BatchNorm/gamma', 256, (256,))
('yolov3/darknet53_body/Conv_12/BatchNorm/moving_mean', 128, (128,))
('yolov3/darknet53_body/Conv_42/BatchNorm/gamma', 512, (512,))
('yolov3/yolov3_head/Conv_11/BatchNorm/gamma', 512, (512,))
('yolov3/yolov3_head/Conv_11/BatchNorm/beta', 512, (512,))
('yolov3/darknet53_body/Conv_12/weights', 1, (1, 1, 256, 128))
('yolov3/yolov3_head/Conv_10/BatchNorm/gamma', 256, (256,))
('yolov3/darknet53_body/Conv_15/BatchNorm/moving_variance', 256, (256,))
('yolov3/yolov3_head/Conv_5/BatchNorm/moving_variance', 1024, (1024,))
('yolov3/darknet53_body/Conv_10/weights', 1, (1, 1, 256, 128))
('yolov3/darknet53_body/Conv_25/weights', 3, (3, 3, 128, 256))
('yolov3/yolov3_head/Conv_13/BatchNorm/moving_variance', 512, (512,))
('yolov3/darknet53_body/Conv_32/BatchNorm/moving_variance', 512, (512,))
('yolov3/darknet53_body/Conv_13/BatchNorm/moving_variance', 256, (256,))
('yolov3/darknet53_body/Conv_19/BatchNorm/beta', 256, (256,))
('yolov3/darknet53_body/Conv_13/BatchNorm/beta', 256, (256,))
('yolov3/darknet53_body/Conv_13/BatchNorm/gamma', 256, (256,))
('yolov3/darknet53_body/Conv_2/BatchNorm/beta', 32, (32,))
('yolov3/darknet53_body/Conv_37/weights', 1, (1, 1, 512, 256))
('yolov3/darknet53_body/Conv_7/BatchNorm/gamma', 64, (64,))
('yolov3/yolov3_head/Conv_4/BatchNorm/moving_mean', 512, (512,))
('yolov3/darknet53_body/Conv_31/weights', 1, (1, 1, 512, 256))
('yolov3/yolov3_head/Conv_5/BatchNorm/gamma', 1024, (1024,))
('yolov3/darknet53_body/Conv_21/BatchNorm/moving_variance', 256, (256,))
('yolov3/yolov3_head/Conv_9/BatchNorm/moving_mean', 512, (512,))
('yolov3/yolov3_head/Conv_18/weights', 1, (1, 1, 256, 128))
('yolov3/darknet53_body/Conv_18/BatchNorm/moving_mean', 128, (128,))
('yolov3/darknet53_body/Conv_21/BatchNorm/gamma', 256, (256,))
('yolov3/darknet53_body/Conv_2/BatchNorm/gamma', 32, (32,))
('yolov3/yolov3_head/Conv_3/BatchNorm/beta', 1024, (1024,))
('yolov3/darknet53_body/Conv_42/weights', 3, (3, 3, 256, 512))
('yolov3/yolov3_head/Conv_15/BatchNorm/moving_mean', 128, (128,))
('yolov3/darknet53_body/Conv_44/BatchNorm/gamma', 512, (512,))
('yolov3/darknet53_body/Conv_25/BatchNorm/moving_mean', 256, (256,))
('yolov3/darknet53_body/Conv_18/BatchNorm/beta', 128, (128,))
('yolov3/darknet53_body/Conv_30/weights', 3, (3, 3, 256, 512))
('yolov3/yolov3_head/Conv_21/BatchNorm/gamma', 256, (256,))
('yolov3/darknet53_body/Conv_41/BatchNorm/gamma', 256, (256,))
('yolov3/darknet53_body/Conv_5/weights', 1, (1, 1, 128, 64))
('yolov3/darknet53_body/Conv_6/BatchNorm/moving_mean', 128, (128,))
('yolov3/darknet53_body/Conv_45/BatchNorm/beta', 1024, (1024,))
('yolov3/yolov3_head/Conv_6/weights', 1, (1, 1, 1024, 255))
('yolov3/darknet53_body/Conv_34/BatchNorm/moving_mean', 512, (512,))
('yolov3/darknet53_body/Conv_51/BatchNorm/gamma', 1024, (1024,))
('yolov3/yolov3_head/Conv_10/BatchNorm/moving_mean', 256, (256,))
('yolov3/yolov3_head/Conv_1/BatchNorm/beta', 1024, (1024,))
('yolov3/darknet53_body/Conv_34/BatchNorm/beta', 512, (512,))
('yolov3/yolov3_head/Conv_5/weights', 3, (3, 3, 512, 1024))
('yolov3/darknet53_body/Conv_51/weights', 3, (3, 3, 512, 1024))
('yolov3/darknet53_body/Conv_50/BatchNorm/gamma', 512, (512,))
('yolov3/darknet53_body/Conv_36/BatchNorm/gamma', 512, (512,))
('yolov3/darknet53_body/Conv_29/BatchNorm/moving_variance', 256, (256,))
('yolov3/darknet53_body/Conv_15/BatchNorm/gamma', 256, (256,))
('yolov3/darknet53_body/Conv_50/BatchNorm/beta', 512, (512,))
('yolov3/yolov3_head/Conv_7/BatchNorm/gamma', 256, (256,))
('yolov3/darknet53_body/Conv_47/weights', 3, (3, 3, 512, 1024))
('yolov3/yolov3_head/Conv_2/BatchNorm/gamma', 512, (512,))
('yolov3/darknet53_body/Conv_43/BatchNorm/moving_variance', 1024, (1024,))
('yolov3/darknet53_body/Conv_45/BatchNorm/gamma', 1024, (1024,))
('yolov3/yolov3_head/Conv_20/BatchNorm/gamma', 128, (128,))
('yolov3/darknet53_body/Conv_37/BatchNorm/gamma', 256, (256,))
('yolov3/yolov3_head/Conv_12/weights', 1, (1, 1, 512, 256))
('yolov3/darknet53_body/Conv_45/BatchNorm/moving_variance', 1024, (1024,))
('yolov3/yolov3_head/Conv_5/BatchNorm/moving_mean', 1024, (1024,))
('yolov3/darknet53_body/Conv_6/BatchNorm/beta', 128, (128,))
('yolov3/darknet53_body/Conv_19/BatchNorm/moving_mean', 256, (256,))
('yolov3/yolov3_head/Conv_8/BatchNorm/beta', 256, (256,))
('yolov3/darknet53_body/Conv_11/BatchNorm/moving_variance', 256, (256,))
('yolov3/darknet53_body/Conv_41/BatchNorm/moving_mean', 256, (256,))
('yolov3/darknet53_body/Conv_50/weights', 1, (1, 1, 1024, 512))
('yolov3/darknet53_body/Conv_8/BatchNorm/gamma', 128, (128,))
('yolov3/yolov3_head/Conv/weights', 1, (1, 1, 1024, 512))
('yolov3/darknet53_body/Conv_17/BatchNorm/moving_mean', 256, (256,))
('yolov3/darknet53_body/Conv_11/BatchNorm/beta', 256, (256,))
('yolov3/yolov3_head/Conv_9/BatchNorm/gamma', 512, (512,))
('yolov3/darknet53_body/Conv_42/BatchNorm/moving_variance', 512, (512,))
('yolov3/darknet53_body/Conv_17/BatchNorm/moving_variance', 256, (256,))
('yolov3/darknet53_body/Conv_51/BatchNorm/beta', 1024, (1024,))
('yolov3/darknet53_body/Conv_4/BatchNorm/gamma', 128, (128,))
('yolov3/darknet53_body/Conv_25/BatchNorm/moving_variance', 256, (256,))
('yolov3/darknet53_body/Conv_32/BatchNorm/moving_mean', 512, (512,))
('yolov3/darknet53_body/Conv_19/BatchNorm/moving_variance', 256, (256,))
('yolov3/darknet53_body/Conv_40/BatchNorm/gamma', 512, (512,))
('yolov3/darknet53_body/Conv_41/BatchNorm/beta', 256, (256,))
('yolov3/darknet53_body/Conv_23/BatchNorm/moving_variance', 256, (256,))
('yolov3/yolov3_head/Conv_2/BatchNorm/moving_variance', 512, (512,))
('yolov3/darknet53_body/Conv_9/BatchNorm/beta', 256, (256,))
('yolov3/darknet53_body/Conv_27/BatchNorm/moving_mean', 256, (256,))
('yolov3/darknet53_body/Conv_28/BatchNorm/beta', 512, (512,))
('yolov3/darknet53_body/Conv_45/weights', 3, (3, 3, 512, 1024))
('yolov3/darknet53_body/Conv_46/BatchNorm/beta', 512, (512,))
('yolov3/darknet53_body/Conv_35/BatchNorm/moving_variance', 256, (256,))
('yolov3/darknet53_body/Conv_3/BatchNorm/moving_variance', 64, (64,))
('yolov3/darknet53_body/Conv_46/BatchNorm/moving_variance', 512, (512,))
('yolov3/darknet53_body/Conv_1/BatchNorm/moving_variance', 64, (64,))
('yolov3/darknet53_body/Conv_30/BatchNorm/beta', 512, (512,))
('yolov3/yolov3_head/Conv_18/BatchNorm/gamma', 128, (128,))
('yolov3/yolov3_head/Conv_9/BatchNorm/beta', 512, (512,))
('yolov3/yolov3_head/Conv_10/weights', 1, (1, 1, 512, 256))
('yolov3/yolov3_head/Conv_22/weights', 1, (1, 1, 256, 255))
('yolov3/darknet53_body/Conv_11/weights', 3, (3, 3, 128, 256))
('yolov3/darknet53_body/Conv_24/BatchNorm/moving_variance', 128, (128,))
('yolov3/yolov3_head/Conv_7/weights', 1, (1, 1, 512, 256))
('yolov3/darknet53_body/Conv/weights', 3, (3, 3, 3, 32))
('yolov3/darknet53_body/Conv_19/BatchNorm/gamma', 256, (256,))
('yolov3/yolov3_head/Conv_8/BatchNorm/moving_variance', 256, (256,))
('yolov3/darknet53_body/Conv_16/BatchNorm/gamma', 128, (128,))
('yolov3/darknet53_body/Conv_13/BatchNorm/moving_mean', 256, (256,))
('yolov3/darknet53_body/Conv_23/BatchNorm/beta', 256, (256,))
('yolov3/darknet53_body/Conv_28/weights', 3, (3, 3, 256, 512))
('yolov3/darknet53_body/Conv_25/BatchNorm/gamma', 256, (256,))
('yolov3/yolov3_head/Conv_10/BatchNorm/moving_variance', 256, (256,))
('yolov3/yolov3_head/Conv_3/BatchNorm/moving_variance', 1024, (1024,))
('yolov3/darknet53_body/Conv_33/weights', 1, (1, 1, 512, 256))
('yolov3/darknet53_body/Conv_16/weights', 1, (1, 1, 256, 128))
('yolov3/yolov3_head/Conv_22/biases', 255, (255,))
('yolov3/yolov3_head/Conv_16/BatchNorm/moving_variance', 128, (128,))
('yolov3/darknet53_body/Conv_46/BatchNorm/moving_mean', 512, (512,))
('yolov3/darknet53_body/Conv_30/BatchNorm/gamma', 512, (512,))
('yolov3/darknet53_body/Conv_20/BatchNorm/moving_variance', 128, (128,))
('yolov3/darknet53_body/Conv/BatchNorm/moving_mean', 32, (32,))
('yolov3/yolov3_head/Conv_1/BatchNorm/gamma', 1024, (1024,))
('yolov3/darknet53_body/Conv_48/weights', 1, (1, 1, 1024, 512))
('yolov3/yolov3_head/Conv_10/BatchNorm/beta', 256, (256,))
('yolov3/darknet53_body/Conv_44/weights', 1, (1, 1, 1024, 512))
('yolov3/darknet53_body/Conv_8/BatchNorm/moving_variance', 128, (128,))
('yolov3/darknet53_body/Conv_29/weights', 1, (1, 1, 512, 256))
('yolov3/darknet53_body/Conv_40/BatchNorm/moving_variance', 512, (512,))
('yolov3/darknet53_body/Conv_39/BatchNorm/gamma', 256, (256,))
('yolov3/darknet53_body/Conv_14/weights', 1, (1, 1, 256, 128))
('yolov3/darknet53_body/Conv_18/BatchNorm/gamma', 128, (128,))
('yolov3/darknet53_body/Conv_38/weights', 3, (3, 3, 256, 512))
('yolov3/darknet53_body/Conv_28/BatchNorm/moving_variance', 512, (512,))
('yolov3/yolov3_head/Conv_3/weights', 3, (3, 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值