二叉树

二叉树的定义:

二叉排序树又称二叉查找数。其定义为:二叉排序树是空树,或者是满足如下性质的二叉树。

(1)若它的左子树非空,则左子树上所有的节点的值均小于根节点的值。

(2)若它的右子树非空,则右子树上所有的节点的值均大于根节点的值。

(3)左、右子树本身又各是一棵二叉排序树。


下面是二叉树的相关操作的C++代码实现:


#include <iostream>
#include <stack>
#include <queue>
using namespace std;

class Node
{
    public:
        int data;
        Node * parent;
        Node * left;
        Node * right;
        int tag;
    public:
        Node(): data(-1),parent(NULL),left(NULL),right(NULL),tag(0){};
        Node(int num): data(num), parent(NULL),left(NULL),right(NULL),tag(0){};        
};

class Tree
{
    public:
        Tree(int num[], int len);  //insert data from array num
        void insertNode(int data);  //insert node use recursion
        void insertNode1(int data);   //insert node use non_recursion
        Node *searchNode(int data);   //search node
        void deleteNode(int data);   //delete the node and its' child tree
        void InOrderTree();    //middle_access recursion
        void InOrderTreeUnRec();   //middle_access non_recursion
        void PreOrderTree();   //pre_access recursion
        void PreOrderTreeUnRec();  //pre_access non_recursion
        void PostOrderTree();           //postorder access with recursion
        void PostOrderTreeUnRec();      //postorder access with non_recursion
        void LevelOrderTree();          //levelorder access by queue  
        bool IsSortedTree(Tree tree);   // judge a tree is sorted_tree or not
};

Tree::Tree(int num[], int len)
{
    root = new Node(num[0]);
    for (int index = 1;index < len ;index++ )
    {
        insertNode1(num[index]);
    }
}
//insert data with non_recursion
void Tree::insertNode1(int data)
{
    Node *p,*par;
    Node *newNode = new Node(data);
    p = par = root;

    while(NULL != p)
    {
        par = p;
        if(data > p->data)
        {
            p = p->right;
        }
        else if (data < p->data)
        {
            p = p->left;
        }
        else
        {
              delete newNode;
              return;
        }

    }
    newNode->parent = par;
    if(par->data > new->data)
    {
        par->left = newNode;
    }
    else
    {
        par->right = newNode;
    }
}

//insert data with recursion
void Tree::insertNode(int data)
{
    if(NULL != root)
    {
        insertNode(root, data);  //call the private function
    }
}
//the private function with recursion
void Tree::insertNode(Node *current,int data)
{
    if(data < current->data)
    {
        if(NULL == current->left)
        {
            current->left = new Node(data);
            current->left->parent = current;
        }
        else
        {
            insertNode(current->left,data);
        }
    }
    else if(data > current->data)
    {
        if(NULL ==current->right)
        {
            current->right = new Node(data);
            current->right->parent = current;
        }
        else
        {
            insertNode(current->right,data);        
        }
    }
    return;
}

// search node
Node * Tree::searchNode(int data)
{
    Node * current = NULL;
    if(NULL != root)
    {
        current = searchNode(root,data);  //call the private function to search node
    }
    return current;
}
//the private funcion
Node * Tree::searchNode(Node *current, int data)
{
    if(data < current->data)
    {
        if(NULL == current->left)
        {
            return NULL;
        }
        return searchNode(current->left,data);
    }
    else if(data > curren->data)
    {
        if(NULL == current->right)
            return NULL;
        return searchNode(current->right,data);
    }
    return current;
}
//delete node which data is the given
void Tree::deleteNode(int data)
{
    Node * curent = NULL;
    current = searchNode(data);  // find the node
    if(NULL != current)
        deleteNode(current);  // call the private function
}

//call the private function
void Tree::deleteNode(Node * current)
{
    if (NULL != current->left)
    {
        deleteNode(current->left);
    }
    else if (NULL != current->right)
    {
        deleteNode(current->right);
    }

    if (NULL == current->parent)
    {
        delete current;
        root =NULL;
        return;
    }

    if (current->parent->data > current->data)
    {   // current is the left node
        current->parent->left = NULL;
    }
    else
    {   // current is the right node
        current->parent->right = NULL;
    }
    delete current;
}

//InOrder the sorted_tree with recurion
void Tree::InOrderTree()
{
    if(NULL == root)
        return;
    InOrderTree(root);   // call the private function
}

//call the private function
void Tree::InOrderTree(Node * current)
{
    if (NUll != current)
    {
        InOrderTree(current->left);
        cout<<current->data<<"  ";
        InOrderTree(current->right);
    }
}

//InOrder the sorted_tree with non_recursion by use stack
void Tree::InorderTreeUnRec()
{
    stack<Node *>s;
    Node *p = root;
    while(NULL != P || !s.empty())
    {
        while(NULL != p)
        {
            s.push(p);
            p = p->left;
        }
        if(!s.empty())
        {
            p = s.top();
            s.pop();
            cout<<p->data <<"  ";
            p = p->right;
        }
    }
}

//preOrder access with recursion
void Tree::PreOrderTree()
{
    if(NULL == root)
        return;
    PreOrderTree(root);  //call the private function
}

//call the private to preOrderTreee
void Tree::PreOrderTree(Node * current)
{
    if(NULL !=current)
    {
        cout<<current->data<<"  ";
        PreOrderTree(current->left);
        PreOrderTree(current->right);
    }
}

//preOrder access with recursion by using a stack
void Tree::PreOrderTreeUnRec()
{
    stack<Node *> s;
    Node *p = root;
    while(NULL !=P || !s.empty())
    {
        while(NULL != p)
        {
            cout<< p->data <<" ";
            s.push(p);
            p = p->left;
        }
        if(!s.empty())
        {
            p = s.top;
            s.pop();
            p = p->right;
        }
    }
}

void Tree::PostOrderTree()
{
    if(NULL == root)
        return;
    PostOrderTree(root);  //call the pri
}
//call the private function
void Tree::PostOrderTree(node * current)
{
    if (NUll != current)
    {
        PostOrderTree(current->left);
        PostOrderTree(current->right);
        cout<<current->data<<"  ";
    }
}

//postOrder the sorted_tree with non_recursion
void Tree::PostOrderTreeUnRec()
{
    stack<Node *> s;
    Node * p = root;
    while(NULL != p || !s.empty())
    {
        while ( NULL != p)
        {
            s.push(p);
            p = p->left;
        }
        if(!s.empty())
        {
            p = s.top();
            if (p->tag)
            {
                cout<<p->data<<"  ";
                s.pop();
                p = NULL;
            }
            else
            {
                p->tag = 1;
                p = p->right;
            }
        }
    }
}

//level order access
void Tree::LevelOrderTree()
{
    queue<Node *> p;
    Node * ptr = root;
    q.push(root);
    
    while(!q.empty())  
    {  
        ptr = q.front();      
        q.pop();              
        cout<<ptr->data<<" ";      
        if(NULL != ptr->left)      
        {  
            q.push(ptr->left);  
        }  
        if(NULL != ptr->right)     
        {  
            q.push(ptr->right);  
        }  
    }  
}

bool Tree::IsSortedTree(Tree tree)  
{  
    int lastvalue = 0;           
    stack<Node *> s;  
    Node *p = tree.root;  
 
    while(NULL != p || !s.empty())  
    {  
        while(NULL != p)  
        {  
            s.push(p);        
            p = p->left;  
        }  
        if(!s.empty())  
        {  
            p = s.top();     
            s.pop();  
            if(0 == lastvalue || lastvalue < p->data)  
            {  
                 
                lastvalue = p->data;  
            }  
            else if(lastvalue >= p->data)  
            {  
                  
                return false;  
            }  
            p = p->right;    
        }                     
    }  
 
    return true;      
}  
 


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值