import numpy
X = 2 * numpy.random.rand(100, 1)
Y = 4 + 3 * X + numpy.random.randn(100, 1)
import matplotlib.pyplot as plt
plt.plot(X, Y, 'b.')
[<matplotlib.lines.Line2D at 0x152a8c1a4c0>]
# numpy.ones()函数返回给定形状和数据类型的新数组,其中元素的值设置为1
X_b = numpy.c_[numpy.ones((100, 1)), X] # add x0 = 1 to each instance
theta_best = numpy.linalg.inv(X_b.T.dot(X_b)).dot(X_b.T).dot(Y) # 线性回归最优参数矩阵
# numpy.linalg.inv() 函数计算矩阵的乘法逆矩阵