obj analysis2

本文详细介绍了objdump命令的使用方法及各种选项的功能,通过实际案例展示了如何利用objdump进行二进制文件分析,特别是对汇编代码的解读。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

objdump的使用方法

     objdump有点象那个快速查看之流的工具,就是
     以一种可阅读的格式让你更多地了解二进制文件
     可能带有的附加信息。对于一般只想让自己程序
     跑起来的程序员,这个命令没有更多意义,对于
     想进一步了解系统的程序员,应该掌握这种工具,
     至少你可以自己写写shellcode了,或者看看人家
     给的exploit中的shellcode是什么东西。

目录:

     ★ 测试练习前的准备工作
     ★ Redhat 6.0 objdump命令的man手册
     ★ objdump应用举例(待增加)
     ★ 相关命令

★ 测试练习前的准备工作

cp /usr/lib/libpcap.a /home/scz/src
nm -s libpcap.a | more
ar tv libpcap.a
ar xv libpcap.a inet.o
nm -s inet.o

关于nm -s的显示请自己man nm查看

★ Redhat 6.0 objdump命令的man手册

objdump - 显示二进制文件信息

objdump
       [-a] [-b bfdname |
       --target=bfdname] [-C] [--debugging]
       [-d] [-D]
       [--disassemble-zeroes]
       [-EB|-EL|--endian={big|little}] [-f]
       [-h] [-i|--info]
       [-j section | --section=section]
       [-l] [-m machine ] [--prefix-addresses]
       [-r] [-R]
       [-s|--full-contents] [-S|--source]
       [--[no-]show-raw-insn] [--stabs] [-t]
       [-T] [-x]
       [--start-address=address] [--stop-address=address]
       [--adjust-vma=offset] [--version] [--help]
       objfile...

--archive-headers
-a 显示档案库的成员信息,与 ar tv 类似

     objdump -a libpcap.a
     和 ar -tv libpcap.a 显示结果比较比较
     显然这个选项没有什么意思。

--adjust-vma=offset
     When   dumping   information, first add offset to all
     the section addresses.   This is useful if the   sec-
     tion   addresses   do   not correspond   to the symbol
     table, which can happen when   putting   sections   at
     particular   addresses when using a format which can
     not represent section addresses, such as a.out.

-b bfdname
--target=bfdname
     指定目标码格式。这不是必须的,objdump能自动识别许多格式,
     比如:objdump -b oasys -m vax -h fu.o
     显示fu.o的头部摘要信息,明确指出该文件是Vax系统下用Oasys
     编译器生成的目标文件。objdump -i将给出这里可以指定的
     目标码格式列表

--demangle
-C 将底层的符号名解码成用户级名字,除了去掉所有开头
    的下划线之外,还使得C++函数名以可理解的方式显示出来。

--debugging
     显示调试信息。企图解析保存在文件中的调试信息并以C语言
     的语法显示出来。仅仅支持某些类型的调试信息。

--disassemble
-d 反汇编那些应该还有指令机器码的section

--disassemble-all
-D 与 -d 类似,但反汇编所有section

--prefix-addresses
     反汇编的时候,显示每一行的完整地址。这是一种比较老的反汇编格式。
     显示效果并不理想,但可能会用到其中的某些显示,自己可以对比。

--disassemble-zeroes
     一般反汇编输出将省略大块的零,该选项使得这些零块也被反汇编。

-EB
-EL
--endian={big|little}
     这个选项将影响反汇编出来的指令。
     little-endian就是我们当年在dos下玩汇编的时候常说的高位在高地址,
     x86都是这种。

--file-headers
-f 显示objfile中每个文件的整体头部摘要信息。

--section-headers
--headers
-h 显示目标文件各个section的头部摘要信息。

--help 简短的帮助信息。

--info
-i 显示对于 -b 或者 -m 选项可用的架构和目标格式列表。

--section=name
-j name 仅仅显示指定section的信息

--line-numbers
-l 用文件名和行号标注相应的目标代码,仅仅和-d、-D或者-r一起使用
    使用-ld和使用-d的区别不是很大,在源码级调试的时候有用,要求
    编译时使用了-g之类的调试编译选项。

--architecture=machine
-m machine
     指定反汇编目标文件时使用的架构,当待反汇编文件本身没有描述
     架构信息的时候(比如S-records),这个选项很有用。可以用-i选项
     列出这里能够指定的架构

--reloc
-r 显示文件的重定位入口。如果和-d或者-D一起使用,重定位部分以反汇
    编后的格式显示出来。

--dynamic-reloc
-R 显示文件的动态重定位入口,仅仅对于动态目标文件有意义,比如某些
    共享库。

--full-contents
-s 显示指定section的完整内容。

     objdump --section=.text -s inet.o | more

--source
-S 尽可能反汇编出源代码,尤其当编译的时候指定了-g这种调试参数时,
    效果比较明显。隐含了-d参数。

--show-raw-insn
     反汇编的时候,显示每条汇编指令对应的机器码,除非指定了
     --prefix-addresses,这将是缺省选项。

--no-show-raw-insn
     反汇编时,不显示汇编指令的机器码,这是指定 --prefix-addresses
     选项时的缺省设置。

--stabs
     Display the contents of the .stab, .stab.index, and
     .stab.excl sections from an ELF file.   This is only
     useful   on   systems   (such as Solaris 2.0) in which
     .stab debugging symbol-table entries are carried in
     an ELF section.   In most other file formats, debug-
     ging   symbol-table   entries   are interleaved   with
     linkage symbols, and are visible in the --syms output.

--start-address=address
     从指定地址开始显示数据,该选项影响-d、-r和-s选项的输出。

--stop-address=address
     显示数据直到指定地址为止,该选项影响-d、-r和-s选项的输出。

--syms
-t 显示文件的符号表入口。类似于nm -s提供的信息

--dynamic-syms
-T 显示文件的动态符号表入口,仅仅对动态目标文件有意义,比如某些
    共享库。它显示的信息类似于 nm -D|--dynamic 显示的信息。

--version 版本信息

     objdump --version

--all-headers
-x 显示所有可用的头信息,包括符号表、重定位入口。-x 等价于
    -a -f -h -r -t 同时指定。

     objdump -x inet.o

参看 nm(1)

★ objdump应用举例(待增加)

/*
g++ -g -Wstrict-prototypes -Wall -Wunused -o objtest objtest.c
*/
#include
#include
int main ( int argc, char * argv[] )
{
     execl( "/bin/sh", "/bin/sh", "-i", 0 );
     return 0;
}

g++ -g -Wstrict-prototypes -Wall -Wunused -o objtest objtest.c
objdump -j .text -Sl objtest | more
/main(查找)

08048750:
main():
/home/scz/src/objtest.c:7
*/
#include
#include
int main ( int argc, char * argv[] )
{
8048750:        55                       pushl   %ebp
8048751:        89 e5                    movl    %esp,%ebp
/home/scz/src/objtest.c:8
         execl( "/bin/sh", "/bin/sh", "-i", 0 );
8048753:        6a 00                    pushl   $0x0
8048755:        68 d0 87 04 08           pushl   $0x80487d0
804875a:        68 d3 87 04 08           pushl   $0x80487d3
804875f:        68 d3 87 04 08           pushl   $0x80487d3
8048764:        e8 db fe ff ff           call    8048644 <_init+0x40>
8048769:        83 c4 10                 addl    $0x10,%esp
/home/scz/src/objtest.c:9
         return 0;
804876c:        31 c0                    xorl    %eax,%eax
804876e:        eb 04                    jmp     8048774
8048770:        31 c0                    xorl    %eax,%eax
8048772:        eb 00                    jmp     8048774
/home/scz/src/objtest.c:10
}
8048774:        c9                       leave 
8048775:        c3                       ret   
8048776:        90                       nop

如果说上面还不够清楚,可以用下面的命令辅助一下:

objdump -j .text -Sl objtest --prefix-addresses | more
objdump -j .text -Dl objtest | more

去掉调试编译选项重新编译
g++ -O3 -o objtest objtest.c
objdump -j .text -S objtest | more

08048778:
main():
8048778:        55                       pushl   %ebp
8048779:        89 e5                    movl    %esp,%ebp
804877b:        6a 00                    pushl   $0x0
804877d:        68 f0 87 04 08           pushl   $0x80487f0
8048782:        68 f3 87 04 08           pushl   $0x80487f3
8048787:        68 f3 87 04 08           pushl   $0x80487f3
804878c:        e8 db fe ff ff           call    804866c <_init+0x40>
8048791:        31 c0                    xorl    %eax,%eax
8048793:        c9                       leave 
8048794:        c3                       ret   
8048795:        90                       nop

与前面-g编译后的二进制代码比较一下,有不少区别。
 

 

优化一下下面的代码,给我优化后的完整的代码:classdef TDMPerformanceAnalyzer < TDMSystem properties analysisResults % 分析结果结构体 snrRange % SNR测试范围 slotRange % 时隙数量测试范围 iterationData % 迭代分析数据 comparisonData % 比较分析数据 efficiencyData % 效率分析数据 summaryTable % 汇总结果表格 end methods function obj = TDMPerformanceAnalyzer(params) % 构造函数 - 验证和初始化参数 if ~isstruct(params) error('输入参数必须是结构体'); end % 调用父类构造函数 obj@TDMSystem(params); % 初始化分析参数 if ~isfield(params, 'snrRange') % 从其他代码中获取的SNR值 obj.snrRange = [15 25 35]; % 使用前面三个代码中的SNR值 else obj.snrRange = params.snrRange; end if ~isfield(params, 'slotRange') % 从其他代码中获取的时隙值 obj.slotRange = [30 60 90]; % 使用前面三个代码中的时隙值 else obj.slotRange = params.slotRange; end % 初始化结果存储 obj.analysisResults = struct(); obj.iterationData = struct(); obj.comparisonData = struct(); obj.efficiencyData = struct(); obj.summaryTable = table(); end function obj = runPerformanceAnalysis(obj) % 运行全面性能分析 fprintf('开始TDM系统性能分析...\n'); try % 1. 基础性能分析 fprintf('执行基础性能分析...\n'); obj = obj.runBaseAnalysis(); % 2. SNR敏感性分析 fprintf('执行SNR敏感性分析...\n'); obj = obj.runSNRAnalysis(); % 3. 时隙数量分析 fprintf('执行时隙数量分析...\n'); obj = obj.runSlotAnalysis(); % 4. 策略比较分析 fprintf('执行策略比较分析...\n'); obj = obj.runStrategyComparison(); % 5. 效率分析 fprintf('执行系统效率分析...\n'); obj = obj.runEfficiencyAnalysis(); % 6. 生成汇总表格 fprintf('生成性能对比汇总表...\n'); obj = obj.generateSummaryTable(); % 7. 可视化分析结果 fprintf('可视化分析结果...\n'); obj.visualizeAnalysisResults(); % 8. 导出汇总表格 obj.exportSummaryTable(); fprintf('性能分析完成!\n'); catch ME fprintf('分析过程中发生错误: %s\n', ME.message); rethrow(ME); end end function obj = runBaseAnalysis(obj) % 执行基础性能分析 % 复用父类的仿真逻辑 obj = obj.runSimulation(); % 保存基础分析结果 obj.analysisResults.base = struct(); obj.analysisResults.base.ber = obj.ber; obj.analysisResults.base.snr = obj.performance.snr; obj.analysisResults.base.corr = obj.performance.corr; obj.analysisResults.base.slotAllocation = obj.allocatedSlots; obj.analysisResults.base.slotUtilization = sum(obj.allocatedSlots) / obj.params.totalSlots * 100; end function obj = runSNRAnalysis(obj) % 执行SNR敏感性分析 numSignals = obj.params.numSignals; numSNR = length(obj.snrRange); % 预分配结果数组 berResults = zeros(numSignals, numSNR); snrResults = zeros(numSignals, numSNR); corrResults = zeros(numSignals, numSNR); slotUtilization = zeros(numSNR, 1); % 保存当前SNR设置 originalSNR = obj.params.snrDb; % 对每个SNR值执行仿真 for i = 1:numSNR fprintf('SNR分析: %d/%d (SNR = %.1f dB)\n', i, numSNR, obj.snrRange(i)); % 设置当前SNR obj.params.snrDb = obj.snrRange(i); % 运行仿真 obj = obj.runSimulation(); % 保存结果 berResults(:, i) = obj.ber; snrResults(:, i) = obj.performance.snr; corrResults(:, i) = obj.performance.corr; slotUtilization(i) = sum(obj.allocatedSlots) / obj.params.totalSlots * 100; end % 恢复原始SNR设置 obj.params.snrDb = originalSNR; % 保存SNR分析结果 obj.analysisResults.snr = struct(); obj.analysisResults.snr.range = obj.snrRange; obj.analysisResults.snr.ber = berResults; obj.analysisResults.snr.snr = snrResults; obj.analysisResults.snr.corr = corrResults; obj.analysisResults.snr.slotUtilization = slotUtilization; end function obj = runSlotAnalysis(obj) % 执行时隙数量分析 numSignals = obj.params.numSignals; numSlots = length(obj.slotRange); % 预分配结果数组 berResults = zeros(numSignals, numSlots); snrResults = zeros(numSignals, numSlots); corrResults = zeros(numSignals, numSlots); efficiency = zeros(numSlots, 1); slotUtilization = zeros(numSlots, 1); % 保存当前时隙设置 originalSlots = obj.params.totalSlots; % 对每个时隙数量执行仿真 for i = 1:numSlots fprintf('时隙分析: %d/%d (时隙数 = %d)\n', i, numSlots, obj.slotRange(i)); % 设置当前时隙数量 obj.params.totalSlots = obj.slotRange(i); % 运行仿真 obj = obj.runSimulation(); % 保存结果 berResults(:, i) = obj.ber; snrResults(:, i) = obj.performance.snr; corrResults(:, i) = obj.performance.corr; efficiency(i) = sum(obj.performance.snr) / numSignals; slotUtilization(i) = sum(obj.allocatedSlots) / obj.params.totalSlots * 100; end % 恢复原始时隙设置 obj.params.totalSlots = originalSlots; % 保存时隙分析结果 obj.analysisResults.slots = struct(); obj.analysisResults.slots.range = obj.slotRange; obj.analysisResults.slots.ber = berResults; obj.analysisResults.slots.snr = snrResults; obj.analysisResults.slots.corr = corrResults; obj.analysisResults.slots.efficiency = efficiency; obj.analysisResults.slots.slotUtilization = slotUtilization; end function obj = runStrategyComparison(obj) % 执行不同时隙分配策略的比较分析 numSignals = obj.params.numSignals; strategies = {'fixed', 'priority', 'dynamic'}; numStrategies = length(strategies); % 预分配结果数组 berResults = zeros(numSignals, numStrategies); snrResults = zeros(numSignals, numStrategies); corrResults = zeros(numSignals, numStrategies); slotAllocation = zeros(numSignals, numStrategies); efficiency = zeros(numStrategies, 1); slotUtilization = zeros(numStrategies, 1); % 保存当前策略设置 originalStrategy = obj.params.strategy; % 对每个策略执行仿真 for i = 1:numStrategies fprintf('策略比较: %d/%d (策略 = %s)\n', i, numStrategies, strategies{i}); % 设置当前策略 obj.params.strategy = strategies{i}; % 运行仿真 try obj = obj.runSimulation(); % 保存结果 berResults(:, i) = obj.ber; snrResults(:, i) = obj.performance.snr; corrResults(:, i) = obj.performance.corr; slotAllocation(:, i) = obj.allocatedSlots; efficiency(i) = sum(obj.performance.snr) / numSignals; slotUtilization(i) = sum(obj.allocatedSlots) / obj.params.totalSlots * 100; catch ME fprintf('策略 "%s" 仿真失败: %s\n', strategies{i}, ME.message); fprintf('使用默认策略继续分析\n'); % 使用默认策略运行仿真 obj.params.strategy = originalStrategy; obj = obj.runSimulation(); % 保存默认策略结果作为替代 berResults(:, i) = obj.ber; snrResults(:, i) = obj.performance.snr; corrResults(:, i) = obj.performance.corr; slotAllocation(:, i) = obj.allocatedSlots; efficiency(i) = sum(obj.performance.snr) / numSignals; slotUtilization(i) = sum(obj.allocatedSlots) / obj.params.totalSlots * 100; end end % 恢复原始策略设置 obj.params.strategy = originalStrategy; % 保存策略比较结果 obj.analysisResults.strategy = struct(); obj.analysisResults.strategy.names = strategies; obj.analysisResults.strategy.ber = berResults; obj.analysisResults.strategy.snr = snrResults; obj.analysisResults.strategy.corr = corrResults; obj.analysisResults.strategy.slotAllocation = slotAllocation; obj.analysisResults.strategy.efficiency = efficiency; obj.analysisResults.strategy.slotUtilization = slotUtilization; end function obj = runEfficiencyAnalysis(obj) % 执行系统效率分析 numIterations = 10; % 分析迭代次数 numSignals = obj.params.numSignals; % 预分配结果数组 berHistory = zeros(numIterations, numSignals); snrHistory = zeros(numIterations, numSignals); slotAllocationHistory = zeros(numIterations, numSignals); efficiencyHistory = zeros(numIterations, 1); slotUtilizationHistory = zeros(numIterations, 1); % 保存当前SNR设置 originalSNR = obj.params.snrDb; % 逐步降低SNR,分析系统效率 snrStep = originalSNR / (numIterations - 1); for i = 1:numIterations currentSNR = originalSNR - (i-1) * snrStep; fprintf('效率分析: %d/%d (SNR = %.1f dB)\n', i, numIterations, currentSNR); % 设置当前SNR obj.params.snrDb = currentSNR; % 运行仿真 obj = obj.runSimulation(); % 保存结果 berHistory(i, :) = obj.ber; snrHistory(i, :) = obj.performance.snr; slotAllocationHistory(i, :) = obj.allocatedSlots; efficiencyHistory(i) = sum(obj.performance.snr) / numSignals; slotUtilizationHistory(i) = sum(obj.allocatedSlots) / obj.params.totalSlots * 100; end % 恢复原始SNR设置 obj.params.snrDb = originalSNR; % 保存效率分析结果 obj.efficiencyData = struct(); obj.efficiencyData.snr = originalSNR - (0:numIterations-1) * snrStep; obj.efficiencyData.ber = berHistory; obj.efficiencyData.snrValues = snrHistory; obj.efficiencyData.slotAllocation = slotAllocationHistory; obj.efficiencyData.efficiency = efficiencyHistory; obj.efficiencyData.slotUtilization = slotUtilizationHistory; end function obj = generateSummaryTable(obj) % 生成性能对比汇总表 % 1. 基础性能数据 baseData = table(); baseData.Metric = {'平均BER', '平均SNR', '平均相关系数', '时隙利用率'}; baseData.Value = [mean(obj.analysisResults.base.ber); mean(obj.analysisResults.base.snr); mean(obj.analysisResults.base.corr); obj.analysisResults.base.slotUtilization]; baseData.Value = round(baseData.Value, 4); baseData.Type = {'基础性能', '基础性能', '基础性能', '基础性能'}; % 2. SNR分析关键数据 [~, bestSNRIdx] = min(mean(obj.analysisResults.snr.ber)); snrData = table(); snrData.Metric = {'最佳SNR', '对应BER', '对应时隙利用率'}; snrData.Value = [obj.analysisResults.snr.range(bestSNRIdx); mean(obj.analysisResults.snr.ber(:, bestSNRIdx)); obj.analysisResults.snr.slotUtilization(bestSNRIdx)]; snrData.Value = round(snrData.Value, 4); snrData.Type = {'SNR分析', 'SNR分析', 'SNR分析'}; % 3. 时隙分析关键数据 [~, bestSlotIdx] = max(mean(obj.analysisResults.slots.snr)); slotData = table(); slotData.Metric = {'最佳时隙数', '对应平均SNR', '对应时隙利用率'}; slotData.Value = [obj.analysisResults.slots.range(bestSlotIdx); mean(obj.analysisResults.slots.snr(:, bestSlotIdx)); obj.analysisResults.slots.slotUtilization(bestSlotIdx)]; slotData.Value = round(slotData.Value, 4); slotData.Type = {'时隙分析', '时隙分析', '时隙分析'}; % 4. 策略比较数据 strategyData = table(); strategyData.Metric = obj.analysisResults.strategy.names'; strategyData.Value = obj.analysisResults.strategy.efficiency; strategyData.Value = round(strategyData.Value, 4); strategyData.Type = {'策略比较'}; strategyData.Type = repmat(strategyData.Type, height(strategyData), 1); % 5. 效率分析关键数据 [~, bestEffIdx] = max(obj.efficiencyData.efficiency); efficiencyData = table(); efficiencyData.Metric = {'最高效率SNR', '最高系统效率', '对应时隙利用率'}; efficiencyData.Value = [obj.efficiencyData.snr(bestEffIdx); obj.efficiencyData.efficiency(bestEffIdx); obj.efficiencyData.slotUtilization(bestEffIdx)]; efficiencyData.Value = round(efficiencyData.Value, 4); efficiencyData.Type = {'效率分析', '效率分析', '效率分析'}; % 合并所有表格 obj.summaryTable = [baseData; snrData; slotData; strategyData; efficiencyData]; % 添加单位列 units = cell(height(obj.summaryTable), 1); for i = 1:height(obj.summaryTable) switch obj.summaryTable.Metric{i} case {'平均BER', '对应BER'} units{i} = '无单位'; case {'平均SNR', '最佳SNR', '对应平均SNR', '最高效率SNR', '最高系统效率'} units{i} = 'dB'; case {'平均相关系数'} units{i} = '无单位'; case endsWith(obj.summaryTable.Metric{i}, '时隙利用率') units{i} = '%'; case {'最佳时隙数'} units{i} = '个'; otherwise units{i} = 'dB'; end end obj.summaryTable.Properties.VariableNames{2} = '值'; obj.summaryTable.单位 = units; end function visualizeAnalysisResults(obj) % 可视化所有分析结果 % 创建主图窗 mainFig = figure('Name', 'TDM系统性能分析结果', 'Position', [100, 100, 1600, 1200]); % 1. 基础性能指标 subplot(3, 2, 1); bar(obj.analysisResults.base.ber); title('基础误码率 (MSE)'); xlabel('信号编号'); ylabel('MSE'); grid on; xticks(1:length(obj.analysisResults.base.ber)); % 2. SNR敏感性分析 subplot(3, 2, 2); hold on; colors = lines(length(obj.analysisResults.base.ber)); for i = 1:length(obj.analysisResults.base.ber) plot(obj.analysisResults.snr.range, obj.analysisResults.snr.ber(i, :), 'Color', colors(i, :), 'LineWidth', 1.5); end hold off; title('SNR对误码率的影响'); xlabel('SNR (dB)'); ylabel('MSE'); grid on; legend(arrayfun(@(x) sprintf('信号%d', x), 1:length(obj.analysisResults.base.ber), 'UniformOutput', false), 'Location', 'best'); % 3. 时隙数量分析 subplot(3, 2, 3); hold on; for i = 1:length(obj.analysisResults.base.ber) plot(obj.analysisResults.slots.range, obj.analysisResults.slots.snr(i, :), 'Color', colors(i, :), 'LineWidth', 1.5); end hold off; title('时隙数量对SNR的影响'); xlabel('时隙数量'); ylabel('SNR (dB)'); grid on; legend(arrayfun(@(x) sprintf('信号%d', x), 1:length(obj.analysisResults.base.ber), 'UniformOutput', false), 'Location', 'best'); % 4. 策略比较分析 subplot(3, 2, 4); bar(obj.analysisResults.strategy.efficiency); title('不同策略的系统效率比较'); xlabel('分配策略'); ylabel('平均SNR (dB)'); grid on; xticks(1:length(obj.analysisResults.strategy.names)); xticklabels(obj.analysisResults.strategy.names); % 5. 效率分析 subplot(3, 2, 5); plot(obj.efficiencyData.snr, obj.efficiencyData.efficiency, 'LineWidth', 1.5); title('系统效率随SNR变化'); xlabel('SNR (dB)'); ylabel('系统效率 (平均SNR)'); grid on; % 6. 时隙利用率分析 subplot(3, 2, 6); hold on; for i = 1:length(obj.analysisResults.base.ber) plot(obj.analysisResults.slots.range, obj.analysisResults.slots.corr(i, :), 'Color', colors(i, :), 'LineWidth', 1.5); end hold off; title('时隙数量对信号相关性的影响'); xlabel('时隙数量'); ylabel('相关系数'); grid on; legend(arrayfun(@(x) sprintf('信号%d', x), 1:length(obj.analysisResults.base.ber), 'UniformOutput', false), 'Location', 'best'); % 添加整体标题 sgtitle(sprintf('TDM系统性能分析 - %d个信号, %d个时隙, %s策略', ... obj.params.numSignals, obj.params.totalSlots, obj.params.strategy)); % 保存图像 try timestamp = datestr(now, 'yyyymmdd_HHMMSS'); filename = sprintf('tdm_performance_analysis_%s.png', timestamp); saveas(mainFig, filename); fprintf('分析结果图像已保存为 %s\n', filename); catch fprintf('无法保存分析结果图像\n'); end % 创建汇总表格图窗 if ~isempty(obj.summaryTable) tableFig = figure('Name', 'TDM系统性能分析汇总表', 'Position', [100, 100, 800, 600]); uitable('Parent', tableFig, 'Data', obj.summaryTable{:, 2:end}, ... 'ColumnName', obj.summaryTable.Properties.VariableNames(2:end), ... 'RowName', obj.summaryTable.Metric, ... 'Position', [20, 20, 760, 560], ... 'FontSize', 10); title(sprintf('TDM系统性能分析汇总表 - %d个信号, %d个时隙, %s策略', ... obj.params.numSignals, obj.params.totalSlots, obj.params.strategy)); % 保存表格图像 try tableFilename = sprintf('tdm_performance_summary_%s.png', timestamp); saveas(tableFig, tableFilename); fprintf('分析汇总表图像已保存为 %s\n', tableFilename); catch fprintf('无法保存分析汇总表图像\n'); end end end function exportSummaryTable(obj, filename) % 导出汇总表格到CSV文件 if nargin < 2 timestamp = datestr(now, 'yyyymmdd_HHMMSS'); filename = sprintf('tdm_performance_summary_%s.csv', timestamp); end if ~isempty(obj.summaryTable) try writetable(obj.summaryTable, filename); fprintf('分析汇总表已导出到 %s\n', filename); catch fprintf('无法导出分析汇总表\n'); end end end function exportAnalysisResults(obj, filename) % 导出分析结果到MAT文件 if nargin < 2 timestamp = datestr(now, 'yyyymmdd_HHMMSS'); filename = sprintf('tdm_analysis_results_%s.mat', timestamp); end results = struct(); results.params = obj.params; results.analysisResults = obj.analysisResults; results.efficiencyData = obj.efficiencyData; results.summaryTable = obj.summaryTable; save(filename, 'results'); fprintf('分析结果已导出到 %s\n', filename); end end methods (Static) function params = createDefaultAnalysisParams() % 创建默认分析参数 params = TDMSystem.createDefaultParams(); params.snrRange = [15 25 35]; % 使用前面三个代码中的SNR值 params.slotRange = [30 60 90]; % 使用前面三个代码中的时隙值 end end end
06-21
根据以上情况和要求,更改以下代码:classdef TDMPerformanceAnalyzer < TDMSystem properties (Access = private) stabilityHistory % 稳定性分析历史 powerConsumption % 功率消耗 efficiencyHistory % 能效历史 qosScore % QoS分数 end properties (Constant) MODULATION_METHODS = {‘BPSK’, ‘QPSK’, ‘16-QAM’}; MODULATION_EFFICIENCY = [1, 2, 4]; % 频谱效率(bps/Hz) MODULATION_COMPLEXITY = [1, 1.5, 2.5]; % 实现复杂度(相对值) COLORS = {‘#0072BD’, ‘#D95319’, ‘#EDB120’, ‘#7E2F8E’, ‘#77AC30’, ‘#4DBEEE’, ‘#A2142F’}; MARKERS = {‘o’, ‘s’, ‘^’, ‘d’, ‘p’, ‘h’, ‘>’}; LINE_STYLES = {‘-’, ‘–’, ‘-.’, ‘:’}; end methods function obj = TDMPerformanceAnalyzer(params) % 构造函数 obj@TDMSystem(params); obj = obj.initializePerformanceData(); % 修复:正确调用私有方法 end function runPerformanceAnalysis(obj) % 运行TDM系统性能分析 fprintf('初始化TDM系统性能分析...\n'); obj = obj.generateSignals(); % 初始时隙分配 obj = obj.allocateSlots(); % 动态性能分析 fprintf('执行动态性能分析...\n'); obj = obj.dynamicPerformanceAnalysis(); % 稳定性分析 fprintf('执行稳定性分析...\n'); obj = obj.stabilityAnalysis(); % 能效分析 fprintf('执行能效分析...\n'); obj = obj.energyEfficiencyAnalysis(); % 系统整体性能评估 fprintf('执行系统整体性能评估...\n'); obj.overallPerformanceEvaluation(); end function obj = dynamicPerformanceAnalysis(obj) % 动态性能分析 iterations = obj.params.iterations; snr_current = obj.params.snrDb; snr_min = 5; snr_decrease_rate = 2; for iter = 1:iterations fprintf('动态分析迭代 #%d (SNR = %.1f dB)...\n', iter, snr_current); % 更新SNR snr_current = max(snr_min, obj.params.snrDb - (iter-1) * snr_decrease_rate); obj.params.snrDb = snr_current; % 系统处理流程 obj = obj.processSystem(); % 评估性能 obj = obj.evaluatePerformance(); % 自适应时隙分配 obj = obj.adaptiveSlotAllocation(); % 计算QoS分数 qos_targets = [0.01, 0.05, 0.1]; % 默认目标误码率 if isfield(obj.params, 'qosTargets') && length(obj.params.qosTargets) >= obj.params.numSignals qos_targets = obj.params.qosTargets(1:obj.params.numSignals); else qos_targets = repmat(qos_targets(1), 1, obj.params.numSignals); end qos = (1 - obj.ber ./ qos_targets')' * 100; qos(qos < 0) = 0; % 确保分数不为负 if isempty(obj.qosScore) obj.qosScore = qos; else obj.qosScore = [obj.qosScore; qos]; end % 可视化当前迭代结果 obj.visualizeDynamicPerformance(iter, snr_current); end end function obj = stabilityAnalysis(obj) % 稳定性分析 clock_drift_max = 0.01; iterations = obj.params.iterations; clock_drift = linspace(0, clock_drift_max, iterations); for iter = 1:iterations fprintf('稳定性分析迭代 #%d (时钟漂移 = %.6f)...\n', iter, clock_drift(iter)); % 更新时钟漂移 obj.params.clockDrift = [0, clock_drift(iter), -clock_drift(iter)]; % 系统处理流程 obj = obj.processSystem(); % 评估性能 obj = obj.evaluatePerformance(); % 记录稳定性分析结果 obj.stabilityHistory = [obj.stabilityHistory; obj.ber']; end % 可视化稳定性分析结果 obj.visualizeStabilityAnalysis(iterations, clock_drift); end function obj = energyEfficiencyAnalysis(obj) % 能效分析 iterations = obj.params.iterations; snr_current = obj.params.snrDb; snr_min = 5; snr_decrease_rate = 2; power_scaling = 0.1; obj.powerConsumption = zeros(iterations, length(obj.MODULATION_METHODS)); obj.efficiencyHistory = zeros(iterations, length(obj.MODULATION_METHODS)); for iter = 1:iterations fprintf('能效分析迭代 #%d (SNR = %.1f dB)...\n', iter, snr_current); % 更新SNR snr_current = max(snr_min, obj.params.snrDb - (iter-1) * snr_decrease_rate); for mod_idx = 1:length(obj.MODULATION_METHODS) % 计算功率消耗 power = obj.calculatePowerConsumption(snr_current, snr_min, ... obj.MODULATION_EFFICIENCY(mod_idx), ... obj.MODULATION_COMPLEXITY(mod_idx), power_scaling); obj.powerConsumption(iter, mod_idx) = power; % 计算能效 efficiency = obj.MODULATION_EFFICIENCY(mod_idx) / power; obj.efficiencyHistory(iter, mod_idx) = efficiency; end end % 可视化能效分析结果 obj.visualizeEnergyEfficiency(iterations); end function visualizeDynamicPerformance(obj, iter, snr) % 可视化动态性能分析结果 fig = figure('Name', ['动态性能分析迭代 #', num2str(iter)], 'Position', [100, 100, 1200, 800]); t = 0:1/obj.params.fs:obj.params.duration-1/obj.params.fs; % 优化布局 gs = tiledlayout(2, 2); gs.Padding = 'compact'; gs.TileSpacing = 'compact'; % 1. 时隙分配 nexttile; b = bar(obj.allocatedSlots); b.FaceColor = obj.COLORS{1}; b.EdgeColor = 'none'; b.LineWidth = 1.5; title(['第' num2str(iter) '次时隙分配 (SNR = ' num2str(snr) 'dB)'], 'FontSize', 12, 'FontWeight', 'bold'); xlabel('信号编号', 'FontSize', 10); ylabel('分配时隙数', 'FontSize', 10); grid on; grid minor; ylim([0, max(obj.allocatedSlots)*1.2]); set(gca, 'FontSize', 10, 'Box', 'on', 'LineWidth', 1.2); % 添加数据标签 for i = 1:length(obj.allocatedSlots) text(i, obj.allocatedSlots(i) + max(obj.allocatedSlots)*0.03, ... num2str(obj.allocatedSlots(i)), ... 'HorizontalAlignment', 'center', 'FontSize', 9, 'FontWeight', 'bold'); end % 2. TDM信号 nexttile; plot(t, obj.tdmSignal, 'Color', obj.COLORS{2}, 'LineWidth', 1.5); title(['第' num2str(iter) '次迭代生成的TDM信号'], 'FontSize', 12, 'FontWeight', 'bold'); xlabel('时间 (s)', 'FontSize', 10); ylabel('幅度', 'FontSize', 10); grid on; grid minor; ylim([-2, 2]); xlim([0, min(0.1, obj.params.duration)]); % 只显示前0.1秒或更短的信号 set(gca, 'FontSize', 10, 'Box', 'on', 'LineWidth', 1.2); % 3. 误码率 nexttile; plot(1:obj.params.numSignals, obj.ber, 'o-', 'LineWidth', 1.5, 'MarkerSize', 8, ... 'MarkerFaceColor', obj.COLORS{3}, 'Color', obj.COLORS{3}); title('估计误码率 (BER)', 'FontSize', 12, 'FontWeight', 'bold'); xlabel('信号编号', 'FontSize', 10); ylabel('误码率', 'FontSize', 10); grid on; grid minor; set(gca, 'YScale', 'log', 'FontSize', 10, 'Box', 'on', 'LineWidth', 1.2); ylim([1e-6, 1]); % 4. QoS分数 nexttile; if ~isempty(obj.qosScore) && size(obj.qosScore, 2) >= obj.params.numSignals % 确保显示最新的QoS分数 latest_qos = obj.qosScore(end, 1:obj.params.numSignals); % 检查是否有NaN或Inf值 valid_indices = ~isnan(latest_qos) & ~isinf(latest_qos); if any(valid_indices) % 只显示有效值 b = bar(1:obj.params.numSignals, latest_qos); b.FaceColor = obj.COLORS{4}; b.EdgeColor = 'none'; b.LineWidth = 1.5; title('服务质量 (QoS) 分数', 'FontSize', 12, 'FontWeight', 'bold'); xlabel('信号编号', 'FontSize', 10); ylabel('QoS分数 (%)', 'FontSize', 10); grid on; grid minor; ylim([0, 110]); set(gca, 'FontSize', 10, 'Box', 'on', 'LineWidth', 1.2); % 添加数据标签 for i = 1:obj.params.numSignals if valid_indices(i) text(i, latest_qos(i) + 3, sprintf('%.1f%%', latest_qos(i)), ... 'HorizontalAlignment', 'center', 'FontSize', 9, 'FontWeight', 'bold'); end end else % 如果没有有效值,显示提示 text(0.5, 0.5, '无有效QoS数据', 'HorizontalAlignment', 'center', 'FontSize', 12); title('服务质量 (QoS) 分数'); axis off; end else % 如果数据为空或维度不匹配,显示提示 text(0.5, 0.5, '未计算QoS分数', 'HorizontalAlignment', 'center', 'FontSize', 12); title('服务质量 (QoS) 分数'); axis off; end % 添加水印 annotation(fig, 'textbox', [0.7, 0.01, 0.25, 0.05], 'String', ['迭代: ' num2str(iter)], ... 'EdgeColor', 'none', 'HorizontalAlignment', 'right', 'FontSize', 8); % 优化图形外观 set(fig, 'Color', 'white'); set(gcf, 'PaperPositionMode', 'auto'); end function visualizeStabilityAnalysis(obj, iterations, clock_drift) % 可视化稳定性分析结果 fig = figure('Name', '稳定性分析结果', 'Position', [100, 100, 1200, 800]); % 优化布局 gs = tiledlayout(2, 1); gs.Padding = 'compact'; gs.TileSpacing = 'compact'; % 1. 时钟偏差 nexttile; p = plot(1:iterations, clock_drift, '-o', 'LineWidth', 1.5, 'MarkerSize', 8, ... 'MarkerFaceColor', obj.COLORS{1}, 'Color', obj.COLORS{1}); title('时钟偏差模拟', 'FontSize', 12, 'FontWeight', 'bold'); xlabel('迭代次数', 'FontSize', 10); ylabel('时钟偏差(秒)', 'FontSize', 10); grid on; grid minor; set(gca, 'FontSize', 10, 'Box', 'on', 'LineWidth', 1.2); % 2. 误码率随时钟偏差变化 nexttile; for i = 1:obj.params.numSignals color_idx = mod(i-1, length(obj.COLORS)) + 1; line_idx = mod(i-1, length(obj.LINE_STYLES)) + 1; marker_idx = mod(i-1, length(obj.MARKERS)) + 1; plot(1:iterations, obj.stabilityHistory(:, i), ... 'LineWidth', 1.5, 'Color', obj.COLORS{color_idx}, ... 'Marker', obj.MARKERS{marker_idx}, 'MarkerSize', 6, ... 'LineStyle', obj.LINE_STYLES{line_idx}); hold on; end hold off; title('误码率随时钟偏差变化', 'FontSize', 12, 'FontWeight', 'bold'); xlabel('迭代次数', 'FontSize', 10); ylabel('误码率 (BER)', 'FontSize', 10); legend(arrayfun(@(x) ['信号' num2str(x)], 1:obj.params.numSignals, 'UniformOutput', false), ... 'Location', 'best', 'FontSize', 9); grid on; grid minor; set(gca, 'YScale', 'log', 'FontSize', 10, 'Box', 'on', 'LineWidth', 1.2); ylim([1e-6, 1]); % 添加水印 annotation(fig, 'textbox', [0.7, 0.01, 0.25, 0.05], ... 'String', ['时钟漂移范围: 0 - ' num2str(clock_drift(end))], ... 'EdgeColor', 'none', 'HorizontalAlignment', 'right', 'FontSize', 8); % 优化图形外观 set(fig, 'Color', 'white'); set(gcf, 'PaperPositionMode', 'auto'); end function visualizeEnergyEfficiency(obj, iterations) % 可视化能效分析结果 fig = figure('Name', '能效分析结果', 'Position', [100, 100, 1200, 800]); % 优化布局 gs = tiledlayout(2, 1); gs.Padding = 'compact'; gs.TileSpacing = 'compact'; % 1. 功率消耗 nexttile; for i = 1:length(obj.MODULATION_METHODS) color_idx = mod(i-1, length(obj.COLORS)) + 1; line_idx = mod(i-1, length(obj.LINE_STYLES)) + 1; marker_idx = mod(i-1, length(obj.MARKERS)) + 1; plot(1:iterations, obj.powerConsumption(:, i), ... 'LineWidth', 1.5, 'Color', obj.COLORS{color_idx}, ... 'Marker', obj.MARKERS{marker_idx}, 'MarkerSize', 6, ... 'LineStyle', obj.LINE_STYLES{line_idx}); hold on; end hold off; title('功率消耗随迭代变化', 'FontSize', 12, 'FontWeight', 'bold'); xlabel('迭代次数', 'FontSize', 10); ylabel('功率消耗', 'FontSize', 10); legend(obj.MODULATION_METHODS, 'Location', 'best', 'FontSize', 9); grid on; grid minor; set(gca, 'FontSize', 10, 'Box', 'on', 'LineWidth', 1.2); % 2. 能效 nexttile; for i = 1:length(obj.MODULATION_METHODS) color_idx = mod(i-1, length(obj.COLORS)) + 1; line_idx = mod(i-1, length(obj.LINE_STYLES)) + 1; marker_idx = mod(i-1, length(obj.MARKERS)) + 1; plot(1:iterations, obj.efficiencyHistory(:, i), ... 'LineWidth', 1.5, 'Color', obj.COLORS{color_idx}, ... 'Marker', obj.MARKERS{marker_idx}, 'MarkerSize', 6, ... 'LineStyle', obj.LINE_STYLES{line_idx}); hold on; end hold off; title('能效随迭代变化', 'FontSize', 12, 'FontWeight', 'bold'); xlabel('迭代次数', 'FontSize', 10); ylabel('能效 (bps/Hz/W)', 'FontSize', 10); legend(obj.MODULATION_METHODS, 'Location', 'best', 'FontSize', 9); grid on; grid minor; set(gca, 'FontSize', 10, 'Box', 'on', 'LineWidth', 1.2); % 添加水印 annotation(fig, 'textbox', [0.7, 0.01, 0.25, 0.05], ... 'String', ['调制方式: ' strjoin(obj.MODULATION_METHODS, ', ')], ... 'EdgeColor', 'none', 'HorizontalAlignment', 'right', 'FontSize', 8); % 优化图形外观 set(fig, 'Color', 'white'); set(gcf, 'PaperPositionMode', 'auto'); end function overallPerformanceEvaluation(obj) % 系统整体性能评估 fig = figure('Name', '系统整体性能评估', 'Position', [100, 100, 1200, 1000]); % 计算平均能效 avg_efficiency = mean(obj.efficiencyHistory, 2); % 优化布局 gs = tiledlayout(4, 1); gs.Padding = 'compact'; gs.TileSpacing = 'compact'; % 1. SNR变化 nexttile; snr_values = obj.params.snrDb - (0:obj.params.iterations-1) * 2; snr_values = max(5, snr_values); p = plot(1:obj.params.iterations, snr_values, '-o', 'LineWidth', 1.5, 'MarkerSize', 8, ... 'MarkerFaceColor', obj.COLORS{1}, 'Color', obj.COLORS{1}); title('信噪比 (SNR) 变化', 'FontSize', 12, 'FontWeight', 'bold'); xlabel('迭代次数', 'FontSize', 10); ylabel('SNR (dB)', 'FontSize', 10); grid on; grid minor; set(gca, 'FontSize', 10, 'Box', 'on', 'LineWidth', 1.2); % 2. QoS分数 nexttile; if ~isempty(obj.qosScore) for i = 1:obj.params.numSignals color_idx = mod(i-1, length(obj.COLORS)) + 1; line_idx = mod(i-1, length(obj.LINE_STYLES)) + 1; marker_idx = mod(i-1, length(obj.MARKERS)) + 1; plot(1:size(obj.qosScore, 1), obj.qosScore(:, i), ... 'LineWidth', 1.5, 'Color', obj.COLORS{color_idx}, ... 'Marker', obj.MARKERS{marker_idx}, 'MarkerSize', 6, ... 'LineStyle', obj.LINE_STYLES{line_idx}); hold on; end hold off; title('系统服务质量 (QoS) 分数', 'FontSize', 12, 'FontWeight', 'bold'); xlabel('迭代次数', 'FontSize', 10); ylabel('QoS分数', 'FontSize', 10); legend(arrayfun(@(x) ['信号' num2str(x)], 1:obj.params.numSignals, 'UniformOutput', false), ... 'Location', 'best', 'FontSize', 9); grid on; grid minor; set(gca, 'FontSize', 10, 'Box', 'on', 'LineWidth', 1.2); else text(0.5, 0.5, '未计算QoS分数', 'HorizontalAlignment', 'center', 'FontSize', 12); title('系统服务质量 (QoS) 分数'); axis off; end % 3. 平均能效 nexttile; p = plot(1:obj.params.iterations, avg_efficiency, '-o', 'LineWidth', 1.5, 'MarkerSize', 8, ... 'MarkerFaceColor', obj.COLORS{3}, 'Color', obj.COLORS{3}); title('系统平均能效', 'FontSize', 12, 'FontWeight', 'bold'); xlabel('迭代次数', 'FontSize', 10); ylabel('平均能效 (bps/Hz/W)', 'FontSize', 10); grid on; grid minor; set(gca, 'FontSize', 10, 'Box', 'on', 'LineWidth', 1.2); % 4. 稳定性分析结果 nexttile; if ~isempty(obj.stabilityHistory) for i = 1:obj.params.numSignals color_idx = mod(i-1, length(obj.COLORS)) + 1; line_idx = mod(i-1, length(obj.LINE_STYLES)) + 1; marker_idx = mod(i-1, length(obj.MARKERS)) + 1; plot(1:size(obj.stabilityHistory, 1), obj.stabilityHistory(:, i), ... 'LineWidth', 1.5, 'Color', obj.COLORS{color_idx}, ... 'Marker', obj.MARKERS{marker_idx}, 'MarkerSize', 6, ... 'LineStyle', obj.LINE_STYLES{line_idx}); hold on; end hold off; title('系统稳定性分析结果', 'FontSize', 12, 'FontWeight', 'bold'); xlabel('迭代次数', 'FontSize', 10); ylabel('误码率 (BER)', 'FontSize', 10); legend(arrayfun(@(x) ['信号' num2str(x)], 1:obj.params.numSignals, 'UniformOutput', false), ... 'Location', 'best', 'FontSize', 9); grid on; grid minor; set(gca, 'YScale', 'log', 'FontSize', 10, 'Box', 'on', 'LineWidth', 1.2); ylim([1e-6, 1]); else text(0.5, 0.5, '未执行稳定性分析', 'HorizontalAlignment', 'center', 'FontSize', 12); title('系统稳定性分析结果'); axis off; end % 打印系统性能评估结果 fprintf('===== 系统整体性能评估 =====\n'); fprintf('总迭代次数: %d\n', obj.params.iterations); fprintf('初始信噪比: %.1f dB\n', obj.params.snrDb); fprintf('最终信噪比: %.1f dB\n', snr_values(end)); fprintf('\n'); % 确保avg_qos的大小与numSignals匹配 if ~isempty(obj.qosScore) avg_qos = mean(obj.qosScore, 1); % 检查avg_qos的长度是否与numSignals一致 if length(avg_qos) < obj.params.numSignals % 如果不一致,填充默认值或调整 avg_qos = [avg_qos, zeros(1, obj.params.numSignals - length(avg_qos))]; end fprintf('平均服务质量 (QoS):\n'); for i = 1:obj.params.numSignals fprintf(' 信号%d: %.1f%%\n', i, avg_qos(i)); end fprintf('\n'); end fprintf('能效分析结果:\n'); for mod_idx = 1:length(obj.MODULATION_METHODS) avg_mod_efficiency = mean(obj.efficiencyHistory(:, mod_idx)); fprintf(' %s: 平均能效 = %.3f bps/Hz/W\n', obj.MODULATION_METHODS{mod_idx}, avg_mod_efficiency); end % 保存评估结果 if isprop(obj.params, 'saveResults') && obj.params.saveResults saveResults(obj, snr_values, avg_qos, avg_efficiency); end % 优化图形外观 set(fig, 'Color', 'white'); set(gcf, 'PaperPositionMode', 'auto'); end function obj = adaptiveSlotAllocation(obj) % 自适应时隙分配 % 根据当前误码率调整各信号的时隙分配 % 基本分配比例 baseAllocation = ones(1, obj.params.numSignals) / obj.params.numSignals; % 如果有误码率数据,根据误码率调整分配 if ~isempty(obj.ber) % 误码率倒数作为优先级指标(误码率越高,优先级越高) priority = 1 ./ (obj.ber + 1e-10); % 避免除零错误 % 归一化优先级 priority = priority / sum(priority); % 结合基本分配和优先级 allocation = 0.7 * baseAllocation + 0.3 * priority'; % 确保总分配时隙数不变 allocation = allocation * sum(obj.allocatedSlots); % 转换为整数 obj.allocatedSlots = round(allocation); % 处理舍入误差 diff = sum(obj.allocatedSlots) - sum(allocation); if diff ~= 0 % 找到最大差异的信号进行调整 [~, idx] = max(abs(obj.allocatedSlots - allocation)); obj.allocatedSlots(idx) = obj.allocatedSlots(idx) - diff; end end fprintf('时隙分配调整为: [%s]\n', num2str(obj.allocatedSlots)); end end methods (Access = private) function obj = initializePerformanceData(obj) % 初始化性能数据存储 obj.stabilityHistory = []; obj.powerConsumption = []; obj.efficiencyHistory = []; obj.qosScore = []; end function obj = processSystem(obj) % 系统处理流程 obj = obj.multiplex(); obj = obj.transmit(); obj = obj.demultiplex(); obj = obj.synchronize(); end function power = calculatePowerConsumption(obj, snr, snr_min, efficiency, complexity, scaling) % 功率消耗模型:与SNR、调制效率和复杂度相关 snr_factor = 1 + (snr - snr_min) / (20 - snr_min); efficiency_factor = 1 / efficiency; complexity_factor = complexity; power = scaling * snr_factor * efficiency_factor * complexity_factor; end end methods (Static) function saveResults(obj, snr_values, avg_qos, avg_efficiency) % 保存分析结果到文件 timestamp = datestr(now, 'yyyymmdd_HHMMSS'); filename = ['TDM_Analysis_Results_' timestamp '.mat']; % 保存所有性能数据 save(filename, 'obj', 'snr_values', 'avg_qos', 'avg_efficiency'); fprintf('分析结果已保存到: %s\n', filename); end end end
06-21
优化代码,仅解决性能分析图表没有显示的问题,代码:classdef TDMPerformanceAnalyzer < TDMSystem % TDMPERFORMANCEANALYZER TDM系统性能分析工具 % 继承自TDMSystem基类,提供全面的性能分析功能 properties snrRange % SNR测试范围 (dB) performanceCurves % 性能曲线数据结构 detailedMetrics % 详细性能指标 convergenceAnalysis % 收敛性分析结果 modulationAnalysis % 调制方式对比分析 end properties (Access = private) originalParams % 原始参数备份 end methods function obj = TDMPerformanceAnalyzer(params) % 构造函数 % 输入: params - 系统参数结构体 % 调用父类构造函数 obj = obj@TDMSystem(params); % 备份原始参数 obj.originalParams = params; % 设置默认SNR范围 obj.snrRange = 0:2:20; % 0dB到20dB,步长2dB end function obj = runPerformanceAnalysis(obj, customSNR) % 主性能分析方法 % 输入: customSNR - (可选)自定义SNR范围 % 处理可选参数 if nargin > 1 && ~isempty(customSNR) validateattributes(customSNR, {'numeric'}, {'vector', 'nonempty'}, ... 'runPerformanceAnalysis', 'customSNR'); obj.snrRange = customSNR; end try % 初始化性能数据结构 numSignals = obj.params.numSignals; numSNR = length(obj.snrRange); % 预分配内存 obj.performanceCurves = struct(... 'ber', zeros(numSNR, numSignals), ... 'snr', zeros(numSNR, numSignals), ... 'mse', zeros(numSNR, numSignals), ... 'throughput', zeros(numSNR, numSignals)); % 保存原始SNR设置 originalSNR = obj.params.snrDb; % 进度条显示 hWaitbar = waitbar(0, '正在执行性能分析...', ... 'Name', 'TDM性能分析', ... 'CreateCancelBtn', 'setappdata(gcbf,''canceling'',1)'); setappdata(hWaitbar, 'canceling', 0); % 遍历不同SNR值 for snrIdx = 1:numSNR % 检查取消操作 if getappdata(hWaitbar, 'canceling') break; end % 更新SNR参数 obj.params.snrDb = obj.snrRange(snrIdx); % 调用超类方法 - 使用正确的语法 obj = runSimulation(obj); % 存储性能指标 obj.performanceCurves.ber(snrIdx, :) = obj.performance.ber; obj.performanceCurves.snr(snrIdx, :) = obj.performance.snr; obj.performanceCurves.mse(snrIdx, :) = obj.performance.mse; % 计算吞吐量 (1 - BER) obj.performanceCurves.throughput(snrIdx, :) = 1 - obj.performance.ber; % 更新进度条 waitbar(snrIdx/numSNR, hWaitbar, ... sprintf('正在分析 SNR=%.1f dB (%.0f%%)', ... obj.snrRange(snrIdx), snrIdx/numSNR*100)); end % 关闭进度条 delete(hWaitbar); % 恢复原始SNR obj.params.snrDb = originalSNR; % 执行详细分析 obj = obj.performDetailedAnalysis(); obj = obj.performConvergenceAnalysis(); obj = obj.analyzeModulationImpact(); catch ME % 错误处理 if exist('hWaitbar', 'var') && ishandle(hWaitbar) delete(hWaitbar); end rethrow(ME); end end function obj = set.snrRange(obj, range) % SNR范围设置验证 validateattributes(range, {'numeric'}, {'vector', 'increasing', 'nonnegative'}, ... 'TDMPerformanceAnalyzer', 'snrRange'); obj.snrRange = range; end function obj = performDetailedAnalysis(obj) % 详细性能指标计算 numSignals = obj.params.numSignals; numSNR = length(obj.snrRange); % 初始化结构体 obj.detailedMetrics = struct(... 'avgBER', zeros(1, numSignals), ... 'avgSNR', zeros(1, numSignals), ... 'minBER', zeros(1, numSignals), ... 'maxThroughput', zeros(1, numSignals), ... 'snrSensitivity', zeros(1, numSignals), ... 'berAt10dB', zeros(1, numSignals), ... 'berAt20dB', zeros(1, numSignals)); for i = 1:numSignals % 提取当前信号的性能数据 berData = obj.performanceCurves.ber(:, i); snrData = obj.performanceCurves.snr(:, i); throughputData = obj.performanceCurves.throughput(:, i); % 平均BER和SNR obj.detailedMetrics.avgBER(i) = mean(berData); obj.detailedMetrics.avgSNR(i) = mean(snrData); % 最低BER obj.detailedMetrics.minBER(i) = min(berData); % 最大吞吐量 obj.detailedMetrics.maxThroughput(i) = max(throughputData); % SNR敏感性 (BER改善率) berDiff = diff(berData); snrDiff = diff(obj.snrRange'); obj.detailedMetrics.snrSensitivity(i) = mean(berDiff ./ snrDiff); % 特定SNR点的BER值 idx10dB = find(obj.snrRange >= 10, 1, 'first'); idx20dB = find(obj.snrRange >= 20, 1, 'first'); if ~isempty(idx10dB) obj.detailedMetrics.berAt10dB(i) = berData(idx10dB); end if ~isempty(idx20dB) && idx20dB <= numSNR obj.detailedMetrics.berAt20dB(i) = berData(idx20dB); end end end function obj = performConvergenceAnalysis(obj, threshold) % 收敛性分析 % 输入: threshold - (可选)收敛判断阈值 if nargin < 2 || isempty(threshold) threshold = 1e-4; % 默认收敛判断阈值 end numSignals = obj.params.numSignals; obj.convergenceAnalysis = struct(... 'convergencePoint', zeros(1, numSignals), ... 'stableBER', zeros(1, numSignals), ... 'convergenceSNR', zeros(1, numSignals)); for i = 1:numSignals berValues = obj.performanceCurves.ber(:, i); % 找到BER变化小于阈值的点 berDiff = abs(diff(berValues)); convergenceIdx = find(berDiff < threshold, 1, 'first'); if isempty(convergenceIdx) obj.convergenceAnalysis.convergencePoint(i) = length(obj.snrRange); obj.convergenceAnalysis.stableBER(i) = berValues(end); obj.convergenceAnalysis.convergenceSNR(i) = obj.snrRange(end); else obj.convergenceAnalysis.convergencePoint(i) = convergenceIdx; obj.convergenceAnalysis.stableBER(i) = berValues(convergenceIdx); obj.convergenceAnalysis.convergenceSNR(i) = obj.snrRange(convergenceIdx); end end end function obj = analyzeModulationImpact(obj) % 调制方式影响分析 if isfield(obj.params, 'signalModulations') && ~isempty(obj.params.signalModulations) modTypes = unique(obj.params.signalModulations); else % 如果没有指定调制方式,默认为所有信号相同 modTypes = {'Unknown'}; obj.params.signalModulations = repmat(modTypes, 1, obj.params.numSignals); end numModTypes = length(modTypes); obj.modulationAnalysis = struct(... 'modulationTypes', {modTypes}, ... 'avgBER', zeros(1, numModTypes), ... 'avgSNR', zeros(1, numModTypes), ... 'sensitivity', zeros(1, numModTypes), ... 'minBER', zeros(1, numModTypes), ... 'maxThroughput', zeros(1, numModTypes)); for m = 1:numModTypes modType = modTypes{m}; signalIndices = find(strcmp(obj.params.signalModulations, modType)); if isempty(signalIndices) continue; end % 提取该调制方式的所有性能数据 berValues = obj.performanceCurves.ber(:, signalIndices); snrValues = obj.performanceCurves.snr(:, signalIndices); throughputValues = obj.performanceCurves.throughput(:, signalIndices); % 计算平均性能 obj.modulationAnalysis.avgBER(m) = mean(berValues(:)); obj.modulationAnalysis.avgSNR(m) = mean(snrValues(:)); % 计算灵敏度 (BER随SNR的变化率) meanBer = mean(berValues, 2); berDiff = diff(meanBer); snrDiff = diff(obj.snrRange'); obj.modulationAnalysis.sensitivity(m) = mean(berDiff ./ snrDiff); % 最佳性能 obj.modulationAnalysis.minBER(m) = min(berValues(:)); obj.modulationAnalysis.maxThroughput(m) = max(throughputValues(:)); end end function figHandle = plotPerformanceResults(obj, figHandle) % 创建性能分析图表 % 输入: figHandle - (可选)现有图形句柄 % 输出: figHandle - 图形句柄 if nargin < 2 || isempty(figHandle) || ~isvalid(figHandle) figHandle = figure('Name', 'TDM系统性能综合分析', ... 'Position', [100, 100, 1400, 900], ... 'Color', 'w'); else figure(figHandle); clf; end % 创建选项卡组 tabGroup = uitabgroup('Parent', figHandle); % 选项卡1: 核心性能指标 tab1 = uitab(tabGroup, 'Title', '核心指标'); ax1 = subplot(2, 3, 1, 'Parent', tab1); hold(ax1, 'on'); colors = lines(obj.params.numSignals); for i = 1:obj.params.numSignals plot(ax1, obj.snrRange, log10(obj.performanceCurves.ber(:, i)), ... 'Color', colors(i, :), 'LineWidth', 2, ... 'DisplayName', sprintf('信号 %d', i)); end hold(ax1, 'off'); title(ax1, '误码率(BER) vs 信噪比(SNR)'); xlabel(ax1, 'SNR (dB)'); ylabel(ax1, 'log_{10}(BER)'); grid(ax1, 'on'); legend(ax1, 'show'); % 2. 吞吐量 vs SNR曲线 ax2 = subplot(2, 3, 2, 'Parent', tab1); hold(ax2, 'on'); for i = 1:obj.params.numSignals plot(ax2, obj.snrRange, obj.performanceCurves.throughput(:, i), ... 'Color', colors(i, :), 'LineWidth', 2, ... 'DisplayName', sprintf('信号 %d', i)); end hold(ax2, 'off'); title(ax2, '吞吐量 vs 信噪比(SNR)'); xlabel(ax2, 'SNR (dB)'); ylabel(ax2, '吞吐量 (1 - BER)'); grid(ax2, 'on'); % 3. 调制方式性能对比 ax3 = subplot(2, 3, 3, 'Parent', tab1); modTypes = obj.modulationAnalysis.modulationTypes; numModTypes = length(modTypes); barValues = [obj.modulationAnalysis.avgBER; ... obj.modulationAnalysis.avgSNR]; hBar = bar(ax3, barValues'); set(ax3, 'XTickLabel', modTypes); title(ax3, '调制方式性能对比'); ylabel(ax3, '性能指标'); legend(ax3, {'平均BER', '平均SNR'}, 'Location', 'best'); grid(ax3, 'on'); % 添加数值标签 for i = 1:numModTypes text(ax3, i, barValues(1, i), sprintf('%.2e', barValues(1, i)), ... 'VerticalAlignment', 'bottom', 'HorizontalAlignment', 'center'); text(ax3, i, barValues(2, i), sprintf('%.1f dB', barValues(2, i)), ... 'VerticalAlignment', 'top', 'HorizontalAlignment', 'center'); end % 4. 收敛点分析 ax4 = subplot(2, 3, 4, 'Parent', tab1); convergencePoints = obj.convergenceAnalysis.convergencePoint; stableBER = obj.convergenceAnalysis.stableBER; yyaxis(ax4, 'left'); bar(ax4, convergencePoints, 'FaceColor', [0.2 0.6 0.8]); ylabel(ax4, '收敛点 (SNR索引)'); yyaxis(ax4, 'right'); plot(ax4, log10(stableBER), 'o-', 'LineWidth', 2, 'MarkerSize', 8); ylabel(ax4, 'log_{10}(稳定BER)'); title(ax4, '信号收敛分析'); xlabel(ax4, '信号编号'); grid(ax4, 'on'); legend(ax4, {'收敛点', '稳定BER'}); % 5. SNR敏感性分析 ax5 = subplot(2, 3, 5, 'Parent', tab1); sensitivity = obj.detailedMetrics.snrSensitivity; bar(ax5, sensitivity, 'FaceColor', [0.8 0.2 0.2]); title(ax5, 'SNR敏感性分析'); xlabel(ax5, '信号编号'); ylabel(ax5, 'BER变化率 / dB'); grid(ax5, 'on'); % 添加数值标签 for i = 1:length(sensitivity) text(ax5, i, sensitivity(i), sprintf('%.2e', sensitivity(i)), ... 'VerticalAlignment', 'bottom', 'HorizontalAlignment', 'center'); end % 6. 综合性能评分 ax6 = subplot(2, 3, 6, 'Parent', tab1); % 性能评分公式: 权重分配 performanceScore = 0.4 * (1 - obj.detailedMetrics.avgBER) + ... 0.3 * (obj.detailedMetrics.avgSNR / 30) + ... 0.2 * obj.detailedMetrics.maxThroughput + ... 0.1 * (1 - abs(obj.detailedMetrics.snrSensitivity)); bar(ax6, performanceScore, 'FaceColor', [0.5 0.2 0.8]); title(ax6, '信号综合性能评分'); xlabel(ax6, '信号编号'); ylabel(ax6, '性能评分 (0-1)'); ylim(ax6, [0 1]); grid(ax6, 'on'); % 添加数值标签 for i = 1:length(performanceScore) text(ax6, i, performanceScore(i), sprintf('%.3f', performanceScore(i)), ... 'VerticalAlignment', 'bottom', 'HorizontalAlignment', 'center'); end % 添加整体标题 annotation(figHandle, 'textbox', [0.3 0.95 0.4 0.05], 'String', ... sprintf('TDM系统综合分析 (策略: %s, 总时隙: %d)', ... obj.params.strategy, obj.params.totalSlots), ... 'EdgeColor', 'none', 'HorizontalAlignment', 'center', ... 'FontSize', 14, 'FontWeight', 'bold'); % 选项卡2: 详细数据视图 tab2 = uitab(tabGroup, 'Title', '详细数据'); axTable = uitable('Parent', tab2, ... 'Data', obj.getPerformanceTableData(), ... 'ColumnName', {'信号', '调制方式', '平均BER', '平均SNR(dB)', '最低BER', '最大吞吐量', 'SNR敏感性', '10dB BER', '20dB BER'}, ... 'Units', 'normalized', ... 'Position', [0.05, 0.05, 0.9, 0.9], ... 'FontSize', 10); % 选项卡3: 收敛性分析 tab3 = uitab(tabGroup, 'Title', '收敛性'); ax7 = subplot(1, 2, 1, 'Parent', tab3); hold(ax7, 'on'); for i = 1:obj.params.numSignals berData = obj.performanceCurves.ber(:, i); convergenceSNR = obj.convergenceAnalysis.convergenceSNR(i); convergenceIdx = obj.convergenceAnalysis.convergencePoint(i); plot(ax7, obj.snrRange, log10(berData), ... 'Color', colors(i, :), 'LineWidth', 2, ... 'DisplayName', sprintf('信号 %d', i)); % 标记收敛点 plot(ax7, convergenceSNR, log10(berData(convergenceIdx)), ... 'o', 'MarkerSize', 10, 'MarkerFaceColor', colors(i, :)); end hold(ax7, 'off'); title(ax7, '收敛点可视化'); xlabel(ax7, 'SNR (dB)'); ylabel(ax7, 'log_{10}(BER)'); grid(ax7, 'on'); legend(ax7, 'show'); ax8 = subplot(1, 2, 2, 'Parent', tab3); convergenceSNR = obj.convergenceAnalysis.convergenceSNR; bar(ax8, convergenceSNR, 'FaceColor', [0.3 0.7 0.5]); title(ax8, '收敛点SNR值'); xlabel(ax8, '信号编号'); ylabel(ax8, '收敛SNR (dB)'); grid(ax8, 'on'); end function tableData = getPerformanceTableData(obj) % 生成性能数据表格 numSignals = obj.params.numSignals; tableData = cell(numSignals, 9); for i = 1:numSignals tableData{i, 1} = i; % 信号编号 % 调制方式 if isfield(obj.params, 'signalModulations') && length(obj.params.signalModulations) >= i tableData{i, 2} = obj.params.signalModulations{i}; else tableData{i, 2} = 'N/A'; end % 性能数据 tableData{i, 3} = sprintf('%.2e', obj.detailedMetrics.avgBER(i)); tableData{i, 4} = sprintf('%.2f', obj.detailedMetrics.avgSNR(i)); tableData{i, 5} = sprintf('%.2e', obj.detailedMetrics.minBER(i)); tableData{i, 6} = sprintf('%.4f', obj.detailedMetrics.maxThroughput(i)); tableData{i, 7} = sprintf('%.2e', obj.detailedMetrics.snrSensitivity(i)); tableData{i, 8} = sprintf('%.2e', obj.detailedMetrics.berAt10dB(i)); tableData{i, 9} = sprintf('%.2e', obj.detailedMetrics.berAt20dB(i)); end end function exportToExcel(obj, filename) % 导出性能数据到Excel % 输入: filename - 输出文件名 if nargin < 2 filename = 'TDM_Performance_Analysis.xlsx'; end % 创建数据表 sheet1 = obj.getPerformanceTableData(); headers = {'信号', '调制方式', '平均BER', '平均SNR(dB)', '最低BER', '最大吞吐量', 'SNR敏感性', '10dB BER', '20dB BER'}; % 写入详细性能数据 xlswrite(filename, [headers; sheet1], '详细性能'); % 写入SNR扫描数据 snrHeaders = {'SNR(dB)'}; for i = 1:obj.params.numSignals snrHeaders{end+1} = sprintf('信号%d_BER', i); snrHeaders{end+1} = sprintf('信号%d_吞吐量', i); end snrData = num2cell([obj.snrRange', ... obj.performanceCurves.ber, ... obj.performanceCurves.throughput]); xlswrite(filename, [snrHeaders; snrData], 'SNR扫描'); % 写入调制方式分析 modHeaders = {'调制方式', '平均BER', '平均SNR(dB)', '灵敏度', '最低BER', '最大吞吐量'}; modData = cell(length(obj.modulationAnalysis.modulationTypes), 6); for m = 1:length(obj.modulationAnalysis.modulationTypes) modData{m, 1} = obj.modulationAnalysis.modulationTypes{m}; modData{m, 2} = obj.modulationAnalysis.avgBER(m); modData{m, 3} = obj.modulationAnalysis.avgSNR(m); modData{m, 4} = obj.modulationAnalysis.sensitivity(m); modData{m, 5} = obj.modulationAnalysis.minBER(m); modData{m, 6} = obj.modulationAnalysis.maxThroughput(m); end xlswrite(filename, [modHeaders; modData], '调制分析'); disp(['性能数据已导出到: ' filename]); end end methods (Static) function analyzer = analyzeSystem(params, customSNR) % 静态方法: 完整分析工作流 % 输入: params - 系统参数 % customSNR - (可选)自定义SNR范围 analyzer = TDMPerformanceAnalyzer(params); if nargin > 1 analyzer = analyzer.runPerformanceAnalysis(customSNR); else analyzer = analyzer.runPerformanceAnalysis(); end % 显示结果 fig = analyzer.plotPerformanceResults(); % 导出结果 exportFilename = sprintf('TDM_Analysis_%s_%dSlots.xlsx', ... params.strategy, params.totalSlots); analyzer.exportToExcel(exportFilename); end end end
最新发布
06-25
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值