如何提升springboot服务吞吐量

本文介绍了如何将电子商务网站的web容器从Tomcat替换为Undertow以提高性能,同时提出了缓存热点数据、利用异步处理和业务拆分等优化方案,还涉及了消息队列的使用来处理非实时性需求,以增强系统的吞吐量和响应速度。

方案

1、undertow替换tomcat
电子商务类型网站大多都是短请求,一般响应时间都在100ms,这时可以将web容器从tomcat替换为undertow,下面介绍下步骤:
1、增加pom配置

		<dependency>
            <groupid>org.springframework.boot</groupid>
            <artifactid>spring-boot-starter-web</artifactid>
            <exclusions>
                <exclusion>
                    <groupid>org.springframework.boot</groupid>
                    <artifactid>spring-boot-starter-tomcat</artifactid>
                </exclusion>
            </exclusions>
        </dependency>
		<dependency>
            <groupid>org.springframework.boot</groupid>
            <artifactid>spring-boot-starter-undertow</artifactid>
        </dependency>

2、增加相关配置

server:
  undertow:
    direct-buffers: true
    io-threads: 4
    worker-threads: 160

2、缓存
将部分热点数据或者静态数据放到本地缓存或者redis中,如果有需要可以定时更新缓存数据

3、异步
在代码过程中我们很多代码都不需要等返回结果,也就是部分代码是可以并行执行,这个时候可以使用异步,最简单的方案是使用springboot提供的@Async注解,当然也可以通过线程池来实现,下面简单介绍下异步步骤。

1、pom依赖 一般springboot引入web相关依赖就行

		<dependency>
            <groupid>org.springframework.boot</groupid>
            <artifactid>spring-boot-starter-web</artifactid>
        </dependency>

2、在启动类中增加@EnableAsync注解

@EnableAsync
@SpringBootApplication
public class RunApplication{
    public static void main(String[] args){
        SpringApplication.run(RunApplication.class, args);
    }
}

3、需要时在指定方法中增加@Async注解,如果是需要等待返回值,则demo如下

	@Async
    public Object test(int i){
     //todo:
    }

4、如果有线程变量或者logback中的mdc,可以增加传递

import org.slf4j.MDC;
import org.springframework.context.annotation.Configuration;
import org.springframework.core.task.TaskDecorator;
import org.springframework.scheduling.annotation.AsyncConfigurerSupport;
import org.springframework.scheduling.annotation.EnableAsync;
import org.springframework.scheduling.concurrent.ThreadPoolTaskExecutor;

import java.util.Map;
import java.util.concurrent.Executor;

/**
 * @Description:
 */
@EnableAsync
@Configuration
public class AsyncConfig extends AsyncConfigurerSupport {
    @Override
    public Executor getAsyncExecutor() {
        ThreadPoolTaskExecutor executor = new ThreadPoolTaskExecutor();
        executor.setTaskDecorator(new MdcTaskDecorator());
        executor.initialize();
        return executor;
    }
}

class MdcTaskDecorator implements TaskDecorator {

    @Override
    public Runnable decorate(Runnable runnable) {
        Map<string, string> contextMap = MDC.getCopyOfContextMap();
        return () -> {
            try {
                MDC.setContextMap(contextMap);
                runnable.run();
            } finally {
                MDC.clear();
            }
        };
    }
}

5、有时候异步需要增加阻塞

import lombok.extern.slf4j.Slf4j;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.scheduling.concurrent.ThreadPoolTaskExecutor;

import java.util.concurrent.Executor;
import java.util.concurrent.ThreadPoolExecutor;

@Configuration
@Slf4j
public class TaskExecutorConfig {

    @Bean("localDbThreadPoolTaskExecutor")
    public Executor threadPoolTaskExecutor() {
        ThreadPoolTaskExecutor taskExecutor = new ThreadPoolTaskExecutor();
        taskExecutor.setCorePoolSize(5);
        taskExecutor.setMaxPoolSize(200);
        taskExecutor.setQueueCapacity(200);
        taskExecutor.setKeepAliveSeconds(100);
        taskExecutor.setThreadNamePrefix("LocalDbTaskThreadPool");
        taskExecutor.setRejectedExecutionHandler((Runnable r, ThreadPoolExecutor executor) -> {
                    if (!executor.isShutdown()) {
                        try {
                            Thread.sleep(300);
                            executor.getQueue().put(r);
                        } catch (InterruptedException e) {
                            log.error(e.toString(), e);
                            Thread.currentThread().interrupt();
                        }
                    }
                }
        );
        taskExecutor.initialize();
        return taskExecutor;
    }
}

4、业务拆分
可以将比较耗时或者不同的业务拆分出来提供单节点的吞吐量

5、集成消息队列
有很多场景对数据实时性要求不那么强的,或者对业务进行业务容错处理时可以将消息发送到kafka,然后延时消费。
在这里插入图片描述

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值