蜻蜓算法(DA)

蜻蜓群的目的:捕食(静态群)和迁移(动态群)
五种行为:
1.Separation:个体之间避免碰撞
Si=−∑j=1NX−XjS_i=-\sum_{j=1}^NX-X_jSi=j=1NXXj
X表示当前个体,Xj是第j个邻近个体的位置。N为邻近个体数量X表示当前个体,X_j是第j个邻近个体的位置。 N为邻近个体数量XXjjN
2.Alignment:与邻近个体速度保持一致
Ai=∑j=1NVjNA_i=\frac{\sum_{j=1}^NV_j}{N}Ai=Nj=1NVj
Vj表示第j个个体的速度V_j表示第j个个体的速度Vjj
3.Cohesion:个体倾向于向周围群体的中心靠拢
Ci=∑j=1NXjN−XC_i=\frac{\sum_{j=1}^NX_j}{N}-XCi=Nj=1NXjX
4.“集中”捕食猎物:Fi=X+−X,其中X+是食物位置F_i=X^{+}-X,其中X^{+}是食物位置Fi=X+X,X+
5.分散躲避天敌:Ei=X−+X,其中X−为敌人位置E_i=X^{-}+X, 其中X^-为敌人位置Ei=X+X,X
△Xt+1=(sSi+aAi+cCi+fFi+eEi)+w△Xt\bigtriangleup X_{t+1}=(sS_i+aA_i+cC_i+fF_i+eE_i)+ w\bigtriangleup X_tXt+1=(sSi+aAi+cCi+fFi+eEi)+wXt
在这里插入图片描述

Xt=X+△Xt+1X_t=X+\triangle X_{t+1}Xt=X+Xt+1
当没有邻居时,位置更新公式为:
Xt+1=Xt+Levy(d)∗X,d为位置向量的维数X_{t+1}=X_t+Levy(d)*X,d为位置向量的维数Xt+1=Xt+Levy(d)X,d
莱维飞行计算公式:
Levy(x)=0.01∗r1∗σ∣r2∣1β,其中r1,r2∈[0,1],β为常量(设定为1.5),σ=Γ(1+β)∗sinπ2Γ(1+β2)∗β∗2β−12)1β,其中,Γ(x)=(x−1)!Levy(x)=0.01*\frac{r_1* \sigma}{|r_2|^{\frac{1}{\beta}}}, 其中r_1,r_2 \in [0,1],\beta为常量(设定为1.5),\sigma=\frac{\Gamma(1+\beta)*sin\frac{\pi}{2}}{\Gamma(\frac{1+\beta}{2})*\beta*2^\frac{\beta-1}{2}})^{\frac{1}{ \beta}}, 其中, \Gamma(x)=(x-1)!Levy(x)=0.01r2β1r1σ,r1,r2[0,1],β1.5,σ=Γ(21+β)β22β1Γ(1+β)sin2π)β1,Γ(x)=(x1)!.
多目标蜻蜓优化算法步骤:
在这里插入图片描述
参考文献:Mirjalili, S.J.N.C. and Applications, Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. 2016. 27(4): p. 1053-1073.

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值