Python脚本实现datax全量同步mysql到hive

Python脚本实现MySQL全量同步Hive生成JSON

前言

在我们构建离线数仓时或者迁移数据时,通常选用sqoop和datax等工具进行操作,sqoop和datax各有优点,datax优点也很明显,基于内存,所以速度上很快,那么在进行全量同步时编写json文件是一项很繁琐的事,是否可以编写脚本来把繁琐事来简单化,接下来我将分享这样一个mysql全量同步到hive自动生成json文件的python脚本。

一、展示脚本

# coding=utf-8
import json
import getopt
import os
import sys
import pymysql

# MySQL 相关配置,需根据实际情况作出修改
mysql_host = "XXXXXX"
mysql_port = "XXXX"
mysql_user = "XXX"
mysql_passwd = "XXXXXX"

# HDFS NameNode 相关配置,需根据实际情况作出修改
hdfs_nn_host = "XXXXXX"
hdfs_nn_port = "XXXX"

# 生成配置文件的目标路径,可根据实际情况作出修改
output_path = "/XXX/XXX/XXX"


def get_connection():
    return pymysql.connect(host=mysql_host, port=int(mysql_port), user=mysql_user, password=mysql_passwd)


def get_mysql_meta(database, table):
    connection = get_connection()
    cursor = connection.cursor()
    sql = "SELECT COLUMN_NAME,DATA_TYPE from information_schema.COLUMNS WHERE TABLE_SCHEMA=%s AND TABLE_NAME=%s ORDER BY ORDINAL_POSITION"
    cursor.execute(sql, [database, table])
    fetchall = cursor.fetchall()
    cursor.close()
    connection.close()
    return fetchall


def get_mysql_columns(database, table):
    return list(map(lambda x: x[0], get_mysql_meta(database, table)))


def get_hive_columns(database, table):
    def type_mapping(mysql_type):
        mappings = {
            "bigint": "bigint",
            "int": "bigint",
            "smallint": "bigint",
            "tinyint": "bigint",
            "decimal": "string",
            "double": "double",
            "float": "float",
            "binary": "string",
            "char": "string",
            "varchar": "string",
            "datetime": "string",
            "time": "string",
            "timestamp": "string",
            "date": "string",
            "text": "string"
        }
        return mappings[mysql_type]

    meta = get_mysql_meta(database, table)
    return list(map(lambda x: {"name": x[0], "type": type_mapping(x[1].lower())}, meta))


def generate_json(source_database, source_table):
    job = {
        "job": {
            "setting": {
                "speed": {
                    "channel": 3
                },
                "errorLimit": {
                    "record": 0,
                    "percentage": 0.02
                }
            },
            "content": [{
                "reader": {
                    "name": "mysqlreader",
                    "parameter": {
                        "username": mysql_user,
                        "password": mysql_passwd,
                        "column": get_mysql_columns(source_database, source_table),
                        "splitPk": "",
                        "connection": [{
                            "table": [source_table],
                            "jdbcUrl": ["jdbc:mysql://" + mysql_host + ":" + mysql_port + "/" + source_database]
                        }]
                    }
                },
                "writer": {
                    "name": "hdfswriter",
                    "parameter": {
                        "defaultFS": "hdfs://" + hdfs_nn_host + ":" + hdfs_nn_port,
                        "fileType": "text",
                        "path": "${targetdir}",
                        "fileName": source_table,
                        "column": get_hive_columns(source_database, source_table),
                        "writeMode": "append",
                        "fieldDelimiter": "\t",
                        "compress": "gzip"
                    }
                }
            }]
        }
    }
    if not os.path.exists(output_path):
        os.makedirs(output_path)
    with open(os.path.join(output_path, ".".join([source_database, source_table, "json"])), "w") as f:
        json.dump(job, f)


def main(args):
    source_database = ""
    source_table = ""

    options, arguments = getopt.getopt(args, '-d:-t:', ['sourcedb=', 'sourcetbl='])
    for opt_name, opt_value in options:
        if opt_name in ('-d', '--sourcedb'):
            source_database = opt_value
        if opt_name in ('-t', '--sourcetbl'):
            source_table = opt_value

    generate_json(source_database, source_table)


if __name__ == '__main__':
    main(sys.argv[1:])

二、使用准备

1、安装python环境

这里我安装的是python3环境

sudo yum install -y python3

2、安装EPEL

EPEL(Extra Packages for Enterprise Linux)是一个由 Fedora Special Interest Group 维护的软件仓库,提供了大量在官方 RHEL 或 CentOS 软件仓库中没有的软件包。当你在 CentOS 或 RHEL 系统上需要安装一些不在官方软件仓库中的软件时,通常会先安装epel - release

sudo yum install -y epel-release

3、安装脚本执行需要的第三方模块

pip3 install pymysql
pip3 install cryptography

这里可能由于斑纹问题cryptography安装不上去更新一下pip和setuptools

pip3 install --upgrade pip
pip3 install --upgrade setuptools

重新安装cryptography

三、脚本使用方法

1、配置脚本

首先根据自己服务器修改脚本相关配置

2、创建.py文件

vim /xxx/xxx/xxx/gen_import_config.py

3、执行脚本

python3 /脚本路径/gen_import_config.py -d 数据库名 -t 表名

4、测试生成json文件是否可用

datax.py -p"-Dtargetdir=/表在hdfs存放路径" /生成的json文件路径

执行时首先要确保targetdir目标地址在hdfs上存在,如果没有需要创建后再次执行 

好的,我可以为您提供一些关于使用DataX进行MySQLHive数据迁移的指导。 首先,您需要安装DataX并配置好环境。然后,您需要编写一个DataX任务配置文件,以指定源和目标数据源的详细信息。 以下是一个简单的MySQLHiveDataX任务配置文件示例: ``` { "job": { "content": [ { "reader": { "name": "mysqlreader", "parameter": { "username": "your_mysql_username", "password": "your_mysql_password", "column": [ "column1", "column2", "column3" ], "connection": [ { "jdbcUrl": "jdbc:mysql://your_mysql_server:3306/your_mysql_database", "table": [ "your_mysql_table" ] } ] } }, "writer": { "name": "hdfswriter", "parameter": { "defaultFS": "hdfs://your_hdfs_server:9000", "fileType": "text", "path": "/your_hdfs_path", "fileName": "your_hdfs_file_name", "fieldDelimiter": "\t", "writeMode": "append", "column": [ "column1", "column2", "column3" ] } } } ], "setting": { "speed": { "channel": "3" } } } } ``` 在上面的配置文件中,您需要将以下信息进行替换: - `your_mysql_username`:MySQL数据库的用户名。 - `your_mysql_password`:MySQL数据库的密码。 - `your_mysql_server`:MySQL数据库的服务器地址。 - `your_mysql_database`:MySQL数据库的名称。 - `your_mysql_table`:要迁移MySQL表的名称。 - `your_hdfs_server`:HDFS服务器的地址。 - `your_hdfs_path`:HDFS中要写入数据的路径。 - `your_hdfs_file_name`:在HDFS中要写入的文件名。 - `column1`,`column2`和`column3`:要迁移的列名称。 完成配置文件后,您可以使用以下命令来执行DataX任务: ``` python datax.py your_job_config.json ``` 这将启动DataX并开始将MySQL表中的数据传输到Hive表中。 希望这可以帮助您进行MySQLHive的数据迁移。如果您有任何其他问题,请随时问我。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

闫哥大数据

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值