(POJ - 2002)Squares

本文介绍了一道经典的算法题——POJ-2002正方形计数。题目要求从给定的星空中找到所有可能形成的正方形。通过暴力枚举任意两点并利用全等三角形原理确定其它两点来解决该问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

(POJ - 2002)Squares

Time Limit: 3500MS Memory Limit: 65536K
Total Submissions: 20599 Accepted: 7919

Description

A square is a 4-sided polygon whose sides have equal length and adjacent sides form 90-degree angles. It is also a polygon such that rotating about its centre by 90 degrees gives the same polygon. It is not the only polygon with the latter property, however, as a regular octagon also has this property.

So we all know what a square looks like, but can we find all possible squares that can be formed from a set of stars in a night sky? To make the problem easier, we will assume that the night sky is a 2-dimensional plane, and each star is specified by its x and y coordinates.

Input

The input consists of a number of test cases. Each test case starts with the integer n (1 <= n <= 1000) indicating the number of points to follow. Each of the next n lines specify the x and y coordinates (two integers) of each point. You may assume that the points are distinct and the magnitudes of the coordinates are less than 20000. The input is terminated when n = 0.
Output

For each test case, print on a line the number of squares one can form from the given stars.

Sample Input

4
1 0
0 1
1 1
0 0
9
0 0
1 0
2 0
0 2
1 2
2 2
0 1
1 1
2 1
4
-2 5
3 7
0 0
5 2
0

Sample Output

1
6
1

题目大意:给出n个点的坐标,问能组成多少个正方形。

思路:直接暴力枚举。先任意选定两个点(x1,y1),(x2,y2),假设以这两个点为边能组成正方形,那么其余两个点可以通过全等三角形的性质计算出,画个图也很容易出来,有两种情况(上面一个,下面一个)。 只要判断理论计算出来的两点是否存在,存在
则ans++,由于这里枚举的时候正方形的每一条边长都枚举了一边所以最后ans/4才是答案。
细节见代码。
ps:尤其注意这里用memset会wa。

#include<cstdio>
#include<cstring>
using namespace std;

const int maxn=20005;
bool vis[maxn<<1][maxn<<1];

struct node
{
    int x,y;
}a[1005];

int main()
{
    int n;
    while(~scanf("%d",&n)&&n)
    {
        //memset(vis,0,sizeof(vis));因为数组太大,所以这里用memset会wa
        for(int i=0;i<n;i++)
        {
            scanf("%d%d",&a[i].x,&a[i].y);
            a[i].x+=20000,a[i].y+=20000;//坐标有正有负,而数组下标没有负数 
            vis[a[i].x][a[i].y]=1;
        }
        int ans=0;
        for(int i=0;i<n;i++)
            for(int j=0;j<i;j++)
            {
                if(i==j) continue;
                int x1=a[i].x+a[i].y-a[j].y;
                int y1=a[i].y+a[j].x-a[i].x;
                int x2=a[j].x+a[i].y-a[j].y;
                int y2=a[j].y+a[j].x-a[i].x;
                if(vis[x1][y1]&&vis[x2][y2]) ans++;
                x1=a[i].x+a[j].y-a[i].y;
                y1=a[i].y+a[i].x-a[j].x;
                x2=a[j].x+a[j].y-a[i].y;
                y2=a[j].y+a[i].x-a[j].x;
                if(vis[x1][y1]&&vis[x2][y2]) ans++;
            }
        printf("%d\n",ans/4);
        for(int i=0;i<n;i++) vis[a[i].x][a[i].y]=0;
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值