(HDU - 3400)Line belt
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 4640 Accepted Submission(s): 1796
Problem Description
In a two-dimensional plane there are two line belts, there are two segments AB and CD, lxhgww’s speed on AB is P and on CD is Q, he can move with the speed R on other area on the plane.
How long must he take to travel from A to D?
Input
The first line is the case number T.
For each case, there are three lines.
The first line, four integers, the coordinates of A and B: Ax Ay Bx By.
The second line , four integers, the coordinates of C and D:Cx Cy Dx Dy.
The third line, three integers, P Q R.
0<= Ax,Ay,Bx,By,Cx,Cy,Dx,Dy<=1000
1<=P,Q,R<=10
Output
The minimum time to travel from A to D, round to two decimals.
Sample Input
1
0 0 0 100
100 0 100 100
2 2 1
Sample Output
136.60
题目大意:二维平面上有两条传送ab,cd,物体在传送带ab上的速度是p,在传送带cd上的速度是q,在其他地方的速度是r,问物体从a到d所需的时间最小是多少。
思路:最小的时间必然是在ab上走一段,cd上走一段,ab,cd之间走一段,设ab上的转折点为m,cd上的转折点为n,则时间t=am/p+mn/r+nd/q。假设m点确定,那么在cd之间三分即可求出点n使mn/r+nd/q最小,再在ab之间三分求整体时间最小,即三分嵌套。
#include<cstdio>
#include<cmath>
using namespace std;
const double eps=1e-8;
double p,q,r;
struct node
{
double x,y;
};
double dis(node a,node b)
{
return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
}
node getmid(node a,node b)
{
node c;
c.x=(a.x+b.x)/2.0;
c.y=(a.y+b.y)/2.0;
return c;
}
double ts2(node m,node c,node d)//确定m在c,d之间ternary_search(三分)
{
node lo=c,hi=d,mid,midmid;
double t1=0,t2=1;//给t1,t2赋初值是为了防止刚开始t1,t2就很接近而不进行while循环
while(fabs(t1-t2)>eps)
{
mid=getmid(lo,hi);
midmid=getmid(mid,hi);
t1=dis(m,mid)/r+dis(mid,d)/q;
t2=dis(m,midmid)/r+dis(midmid,d)/q;
if(t1<t2) hi=midmid;
else lo=mid;
}
return t1;
}
double ts1(node a,node b,node c,node d)//再a,b之间整体三分
{
node lo=a,hi=b,mid,midmid;
double t1=0,t2=1;
while(fabs(t1-t2)>eps)
{
mid=getmid(lo,hi);
midmid=getmid(mid,hi);
t1=dis(a,mid)/p+ts2(mid,c,d);
t2=dis(a,midmid)/p+ts2(midmid,c,d);
if(t1<t2) hi=midmid;
else lo=mid;
}
return t1;
}
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
node a,b,c,d;
scanf("%lf%lf%lf%lf",&a.x,&a.y,&b.x,&b.y);
scanf("%lf%lf%lf%lf",&c.x,&c.y,&d.x,&d.y);
scanf("%lf%lf%lf",&p,&q,&r);
printf("%.2f\n",ts1(a,b,c,d));
}
return 0;
}