(CSU - 1815)Enterprising Escape

本文介绍了一种使用优先队列实现的BFS算法解决特定迷宫问题的方法,目标是最小化从起始位置到边界的时间成本。

(CSU - 1815)Enterprising Escape

Time Limit: 20 Sec Memory Limit: 1024 Mb Submitted: 366 Solved: 118

Description

The Enterprise is surrounded by Klingons! Find the escape route that has the quickest exit time, and print that time.

Input is a rectangular grid; each grid square either has the Enterprise or some class of a Klingon warship. Associated with each class of Klingon warship is a time that it takes for the Enterprise to defeat that Klingon. To escape, the Enterprise must defeat each Klingon on some path to the perimeter. Squares are connected by their edges, not by corners (thus, four neighbors).

Input

The first line will contain T, the number of cases; 2 ≤ T ≤ 100. Each case will start with line containing three numbers k, w, and h. The value for k is the number of different Klingon classes and will be between 1 and 25, inclusive. The value for w is the width of the grid and will be between 1 and 1000, inclusive. The value for h is the height of the grid and will be between 1 and 1000, inclusive.

Following that will be k lines. Each will consist of a capital letter used to label the class of Klingon ships followed by the duration required to defeat that class of Klingon. The label will not be "E". The duration is in minutes and will be between 0 and 100,000, inclusive. Each label will be distinct.

Following that will be h lines. Each will consist of w capital letters (with no spaces between them). There will be exactly one "E" across all h lines, denoting the location of the Enterprise; all other capital letters will be one of the k labels given above, denoting the class of Klingon warship in the square.

Output

Your output should be a single integer value indicating the time required for the Enterprise to escape.

Sample Input

2
6 3 3
A 1
B 2
C 3
D 4
F 5
G 6
ABC
FEC
DBG
2 6 3
A 100
B 1000
BBBBBB
AAAAEB
BBBBBB

Sample Output

2
400

题目大意:有K个大写字母,每个字母有不同的分数(权值),用这些字母排成h行w列的矩阵,一个人从E字母处出发,每次只能上下左右走,问到达矩阵边界时所经过的路径分数的最小值。

思路:很显然可以用bfs求解,用dir[4][2]数组记录人走的四个不同的方向,用数组num[26]记录每一个字母所代表的权值v,又这里每一步路的权值不同,所以考虑用优先队列写bfs。

#include<cstdio>
#include<cstring>
#include<queue>
using namespace std;

const int maxn=1005;
char a[maxn][maxn];
bool vis[maxn][maxn];
int dir[4][2]={{-1,0},{0,1},{1,0},{0,-1}};
int num[26];
int k,w,h;
int sx,sy;

struct node
{
    int x,y,step;
    friend bool operator< (node a,node b)
    {
        return a.step>b.step;
    }
};

bool check(int x,int y)
{
    return (x>=0&&x<h&&y>=0&&y<w);
}

int bfs()
{
    priority_queue<node> q;
    node start,tmp,next;
    start.x=sx;
    start.y=sy;
    start.step=0;
    vis[sx][sy]=true;
    q.push(start);
    while(!q.empty())
    {
        tmp=q.top();
        q.pop();
        if(!check(tmp.x,tmp.y)) return tmp.step;
        for(int i=0;i<4;i++)
        {
            next.x=tmp.x+dir[i][0];
            next.y=tmp.y+dir[i][1];
            if(!check(next.x,next.y)) return tmp.step;
            if(check(next.x,next.y)&&!vis[next.x][next.y])
            {
                int cur=a[next.x][next.y]-'A';
                next.step=tmp.step+num[cur];
                vis[next.x][next.y]=true;
                q.push(next);
            }
        }   
    }
    return 0;
}

int main()
{
    int T;
    scanf("%d",&T);
    while(T--)
    {
        scanf("%d%d%d\n",&k,&w,&h);
        for(int i=0;i<k;i++)
        {
            char c;
            int v;
            scanf("%c %d\n",&c,&v);
            num[c-'A']=v;
        }
        for(int i=0;i<h;i++) scanf("%s",a[i]);
        for(int i=0;i<h;i++)
            for(int j=0;j<w;j++)
                if(a[i][j]=='E')
                {
                    sx=i;
                    sy=j;
                    break;
                }
        memset(vis,false,sizeof(vis));
        printf("%d\n",bfs());
    }
    return 0;
}
基于蒙特卡洛法的规模化电动车有序充放电及负荷预测(Python&Matlab实现)内容概要:本文围绕“基于蒙特卡洛法的规模化电动车有序充放电及负荷预测”展开,结合Python和Matlab编程实现,重点研究大规模电动汽车在电网中的充放电行为建模与负荷预测方法。通过蒙特卡洛模拟技术,对电动车用户的出行规律、充电需求、接入时间与电量消耗等不确定性因素进行统计建模,进而实现有序充放电策略的优化设计与未来负荷曲线的精准预测。文中提供了完整的算法流程与代码实现,涵盖数据采样、概率分布拟合、充电负荷聚合、场景仿真及结果可视化等关键环节,有效支撑电网侧对电动车负荷的科学管理与调度决策。; 适合人群:具备一定电力系统基础知识和编程能力(Python/Matlab),从事新能源、智能电网、交通电气化等相关领域研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①研究大规模电动车接入对配电网负荷特性的影响;②设计有序充电策略以平抑负荷波动;③实现基于概率模拟的短期或长期负荷预测;④为电网规划、储能配置与需求响应提供数据支持和技术方案。; 阅读建议:建议结合文中提供的代码实例,逐步运行并理解蒙特卡洛模拟的实现逻辑,重点关注输入参数的概率分布设定与多场景仿真的聚合方法,同时可扩展加入分时电价、用户行为偏好等实际约束条件以提升模型实用性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值