### 药物-靶标相互作用(DTI)经典算法代码实现
以下是几种经典的药物-靶标相互作用预测方法及其对应的代码实现示例:
#### 1. Jaccard 相似度计算
Jaccard 相似度是一种简单而有效的衡量两组集合相似性的方法,常用于构建药物-药物或蛋白质-蛋白质相似性矩阵[^1]。
```python
def jaccard_similarity(set_a, set_b):
intersection = len(set_a.intersection(set_b))
union = len(set_a.union(set_b))
return intersection / union if union != 0 else 0
# 示例:计算药物 i 和药物 j 的 Jaccard 相似度
drug_i_diseases = {"disease_1", "disease_2", "disease_3"}
drug_j_diseases = {"disease_2", "disease_3", "disease_4"}
similarity_ij = jaccard_similarity(drug_i_diseases, drug_j_diseases)
print(f"Jaccard Similarity between Drug I and Drug J: {similarity_ij}")
```
---
#### 2. 图神经网络(GNN)应用于 DTI 预测
图神经网络(GNNs),特别是基于注意力机制的 GAT(Graph Attention Network),可以有效地捕获药物和靶标的复杂交互模式[^4][^5]。以下是一个简单的 PyTorch Geometric 实现示例:
```python
import torch
from torch_geometric.nn import GCNConv, GATv2Conv
class DTIPredictor(torch.nn.Module):
def __init__(self, input_dim_drug, input_dim_protein, hidden_dim=64):
super(DTIPredictor, self).__init__()
self.drug_conv = GATv2Conv(input_dim_drug, hidden_dim)
self.protein_conv = GATv2Conv(input_dim_protein, hidden_dim)
self.fc = torch.nn.Linear(hidden_dim * 2, 1)
def forward(self, data):
x_drug, edge_index_drug = data.x_drug, data.edge_index_drug
x_protein, edge_index_protein = data.x_protein, data.edge_index_protein
h_drug = torch.relu(self.drug_conv(x_drug, edge_index_drug))
h_protein = torch.relu(self.protein_conv(x_protein, edge_index_protein))
combined_features = torch.cat([h_drug.mean(dim=0), h_protein.mean(dim=0)], dim=-1)
output = self.fc(combined_features).sigmoid()
return output
# 初始化模型并运行前向传播
model = DTIPredictor(input_dim_drug=78, input_dim_protein=128)
data_dummy = type('Data', (), {
'x_drug': torch.randn(10, 78),
'edge_index_drug': torch.randint(0, 10, (2, 20)),
'x_protein': torch.randn(10, 128),
'edge_index_protein': torch.randint(0, 10, (2, 20))
})
output = model(data_dummy)
print(f"Predicted Interaction Probability: {output.item()}")
```
---
#### 3. ColdDTA 数据增强与特征融合
ColdDTA 是一种先进的 DTI 预测框架,它结合了数据增强技术和基于注意力的特征融合技术[^2]。虽然完整的实现较为复杂,但其核心思想可以通过以下伪代码展示:
```python
import numpy as np
def augment_data(features, labels, augmentation_factor=2):
augmented_features = []
augmented_labels = []
for feature, label in zip(features, labels):
for _ in range(augmentation_factor):
noise = np.random.normal(0, 0.1, size=feature.shape)
new_feature = feature + noise
augmented_features.append(new_feature)
augmented_labels.append(label)
return np.array(augmented_features), np.array(augmented_labels)
# 示例:数据增强
features = np.random.rand(100, 128) # 假设有 100 条样本,每条维度为 128
labels = np.random.choice([0, 1], size=(100,))
augmented_features, augmented_labels = augment_data(features, labels)
print(f"Augmented Features Shape: {augmented_features.shape}")
print(f"Augmented Labels Shape: {augmented_labels.shape}")
```
---
#### 4. CE-DTI 因果增强学习
CE-DTI 提出了通过因果不变性增强对比学习的方法来提高 DTI 预测性能[^3]。下面展示了如何分离因果变量节点和非因果变量节点的核心逻辑:
```python
def separate_causal_nodes(graph, target_node_id):
causal_nodes = []
non_causal_nodes = []
for node_id in graph.nodes:
if is_significant_influence(node_id, target_node_id, graph): # 自定义函数判断显著影响
causal_nodes.append(node_id)
else:
non_causal_nodes.append(node_id)
return causal_nodes, non_causal_nodes
# 示例:假设有一个简单的图结构
graph_example = nx.Graph()
graph_example.add_edges_from([(0, 1), (1, 2), (2, 3)])
causal_nodes, non_causal_nodes = separate_causal_nodes(graph_example, target_node_id=2)
print(f"Causal Nodes: {causal_nodes}, Non-Causal Nodes: {non_causal_nodes}")
```
---
### 总结
上述代码片段分别涵盖了 Jaccard 相似度计算、图神经网络应用、数据增强以及因果增强学习等关键技术点。这些方法可以根据具体需求组合使用,从而提升 DTI 预测的效果。