Builder模式

Builder模式

定义

生成器模式也称为建造者模式。生成器模式的意图在于将一个复杂的构建过程和产品相分离,使得同样的构建过程可以创建不同的产品。

在软件设计中,有时候面临着一个非常复杂的对象的创建工作。这个复杂的对象通常可以分成几个较小的部分,由各个子对象组合出这个复杂对象的过程相对来说比较稳定,但是子对象的创建过程各不相同并且可能面临变化。好在这个复杂对象的组装过程是不变的,因此可以把这个组装过程封装起来。

比如生产汽车,汽车由很多不同的工程师负责组装完成,每个工程师有自己负责的一些部件。设计师负责画图纸设定组装过程,并告诉工程师需要的各项部件,最终工程师根据设计师的指示完成产品的生产。至于这些部件是从哪来的,实际是如何被组装在一起的,设计师完全不用关心。

类结构图


builer模式中主要有两个角色:一个是builder(相当于工程师),一个是director(相当于设计师)。builder有构建对象各个部分的功能,以及最后组装对象的功能,而director负责告诉builder各项参数,最后由builder来创建最终的产品对象。

Builder:为创建Product对象的各个部件指定抽象接口。

ConcreteBuilder:实现Builder的接口以构造和装配该产品的各个部件,定义并明确它所创建的产品的表示,并提供一个检索产品的接口。

Director:调用Builder,设置创建参数。

Product:表示被构造的复杂对象。ConcreteBuilder创建该产品的内部表示并定义它的装配过程,包含定义组成部件的类,以及将这些部件装配成最终产品的接口。 

代码示例

假设要组装一辆自行车,并且自行车就是车轮和车架组成。

Builder对应于组装自行车所使用的车轮和车架

ConcreteBuiler对应于自行车的车轮和车架,同时可以返回一辆自行车。

Product对应于自行车。

Director表示组装过程。

此时我们再来理解下面这句话:“在软件系统中,有时候面临着“一个复杂对象”的创建工作,其通常由各个部分的子对象用一定的算法构成;由于需求的变化,这个复杂对象的各个部分经常面临着剧烈的变化,但是将它们组合在一起的算法确相对稳定。”

自行车就是“一个复杂对象”,它有车轮和车架组成,但不管车轮和车架这两个部件怎么变化,生产一辆自行车的过程是不会变的,即组装过程是不会变的。

下面是java示例代码:

Product - Bike

public class Bike {  

    //自行车车架数量  

    int frameNumber;  

    //自行车轮子数量  

    int wheelNumber;  

    public Bike(){  

        frameNumber = 1;  

        wheelNumber = 4;  

    }  

    public int getFrameNumber() {  

        return frameNumber;  

    }  
      
    public int getWheelNumber() {  

        return wheelNumber;  

    }  

}  


Builder - BikeBuilder

public abstract class BikeBuilder {  

    // build bike's framework

    public abstract void BuildFrame(int frameNumber);  

    //build bike's wheels  

    public abstract void BuildWheels(int wheelNumber);  

    // get the final product: a bike 

    public abstract Bike getBike();  

}  

ConcreteBuilder - ConcreteBikeBuilder 

public class ConcreteBikeBuilder extends BikeBuilder {  

    Bike  bike;  

    public ConcreteBikeBuilder(){  

        bike = new Bike();  

    }

    @Override  

    public void BuildFrame(int frameNumber) {  

        bike.frameNumber = frameNumber;  

    }  
  

    @Override  

    public void BuildWheels(int wheelNumber) {  
        bike.wheelNumber = wheelNumber;  

    }    

    @Override  

    public Bike getBike() {  

        return bike;  

    }  

}  

Director - BikeDirector

public class BikeDirector {  

   public void createBike(BikeBuilder concreteBuilder){  

       concreteBuilder.BuildFrame(1);  

       concreteBuilder.BuildWheels(4);  

   }

}  


Test

public class TestClient {  
  
    public static void main(String[] args) {  

        Bike bike = new Bike();  

        BikeBuilder  builder = new ConcreteBikeBuilder();  

        BikeDirector director = new BikeDirector();  

        director.createBike(builder);  

        bike = builder.getBike();

    }

}  

适用性

1、需要生成的产品对象有复杂的内部结构。

2、需要生成的产品对象的属性相互依赖,建造者模式可以强迫生成顺序。

3、在对象创建过程中会使用到系统中的一些其它对象,这些对象在产品对象的创建过程中不易得到。

实现要点

1、建造者模式主要用于“分步骤构建一个复杂的对象”,在这其中“分步骤”是一个稳定的算法,而复杂对象的各个部分则经常变化。

2、产品不需要抽象类,特别是由于创建对象的算法复杂而导致使用此模式的情况下或者此模式应用于产品的生成过程,其最终结果可能差异很大,不大可能提炼出一个抽象产品类。

3、抽象工厂模式(AbtractFactory)解决“系列对象”的需求变化,Builder模式解决“对象部分”的需求变化,建造者模式常和组合模式(Composite Pattern)结合使用。

基于径向基函数神经网络RBFNN的自适应滑模控制学习(Matlab代码实现)内容概要:本文介绍了基于径向基函数神经网络(RBFNN)的自适应滑模控制方法,并提供了相应的Matlab代码实现。该方法结合了RBF神经网络的非线性逼近能力和滑模控制的强鲁棒性,用于解决复杂系统的控制问题,尤其适用于存在不确定性和外部干扰的动态系统。文中详细阐述了控制算法的设计思路、RBFNN的结构与权重更新机制、滑模面的构建以及自适应律的推导过程,并通过Matlab仿真验证了所提方法的有效性和稳定性。此外,文档还列举了大量相关的科研方向和技术应用,涵盖智能优化算法、机器学习、电力系统、路径规划等多个领域,展示了该技术的广泛应用前景。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的研究生、科研人员及工程技术人员,特别是从事智能控制、非线性系统控制及相关领域的研究人员; 使用场景及目标:①学习和掌握RBF神经网络与滑模控制相结合的自适应控制策略设计方法;②应用于电机控制、机器人轨迹跟踪、电力电子系统等存在模型不确定性或外界扰动的实际控制系统中,提升控制精度与鲁棒性; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,深入理解算法实现细节,同时可参考文中提及的相关技术方向拓展研究思路,注重理论分析与仿真验证相结合。
### Builder模式的使用与实现 Builder模式是一种用于构建复杂对象的设计模式,其主要目的是通过逐步设置对象的属性来简化对象的创建过程。这种方式不仅提高了代码的可读性,还隐藏了对象创建的复杂性。 在Java中,Builder模式通常通过以下方式实现: 1. **定义一个包含必要参数的构造函数**:Builder类的构造函数接受对象的核心属性作为参数[^2]。 2. **提供链式调用的方法**:每个设置方法返回Builder对象本身,从而允许将多个设置方法链接在一起[^5]。 3. **创建最终对象**:通过`build()`方法返回构建完成的对象实例[^4]。 以下是一个典型的Builder模式实现示例: ```java // 被构建的复杂对象 public class NutritionFacts { private final int servingSize; private final int servings; private final int calories; private final int sodium; private final int carbohydrates; // 私有构造函数,只能通过Builder创建 private NutritionFacts(Builder builder) { this.servingSize = builder.servingSize; this.servings = builder.servings; this.calories = builder.calories; this.sodium = builder.sodium; this.carbohydrates = builder.carbohydrates; } // Getter 方法 public int getServingSize() { return servingSize; } public int getServings() { return servings; } public int getCalories() { return calories; } public int getSodium() { return sodium; } public int getCarbohydrates() { return carbohydrates; } // 静态内部类 Builder public static class Builder { private final int servingSize; private final int servings; private int calories = 0; private int sodium = 0; private int carbohydrates = 0; // 必要参数的构造函数 public Builder(int servingSize, int servings) { this.servingSize = servingSize; this.servings = servings; } // 设置可选参数的方法,支持链式调用 public Builder calories(int val) { this.calories = val; return this; } public Builder sodium(int val) { this.sodium = val; return this; } public Builder carbohydrates(int val) { this.carbohydrates = val; return this; } // 构建最终对象 public NutritionFacts build() { return new NutritionFacts(this); } } } // 使用示例 NutritionFacts cocaCola = new NutritionFacts.Builder(240, 8) .calories(100) .sodium(35) .carbohydrates(27) .build(); ``` 上述代码展示了如何通过Builder模式构建一个复杂的`NutritionFacts`对象。通过链式调用,可以清晰地设置对象的各个属性。 ### 注意事项 - **必要参数与可选参数**:Builder模式的一个重要特性是区分必要参数和可选参数。必要参数通常在Builder类的构造函数中指定,而可选参数则通过链式调用设置[^2]。 - **不可变对象**:通过私有构造函数和Builder类,可以确保生成的对象是不可变的,从而提高程序的安全性[^4]。 - **适用场景**:当对象的构造需要多步初始化或赋值时,Builder模式尤为适用[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值