Induced norm

本文深入探讨了矩阵诱导范数的概念、定义、性质及其计算方法,包括1范数、无穷范数和欧几里得范数,通过实例展示了如何计算不同范数下矩阵的大小。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

Induced norm

If vector norms on Km and Kn are given (K is field of real or complex numbers), then one defines the corresponding induced norm or operator norm on the space of m-by-n matrices as the following maxima:

 \begin{align} \|A\| &= \max\{\|Ax\| <wbr>: x\in K^n \mbox{ with }\|x\|\le 1\} \ &= \max\{\|Ax\| <wbr>: x\in K^n \mbox{ with }\|x\| = 1\} \ &= \max\left\{\frac{\|Ax\|}{\|x\|} <wbr>: x\in K^n \mbox{ with }x\ne 0\right\}. \end{align}

These are different from the entrywise p-norms and the Schatten p-norms for matrices treated below, which are also usually denoted by  \left \| A \right \| _p .

If m n and one uses the same norm on the domain and the range, then the induced operator norm is a sub-multiplicative matrix norm.

The operator norm corresponding to the p-norm for vectors is:

 \left \| A \right \| _p = \max \limits _{x \ne 0} \frac{\left \| A x\right \| _p}{\left \| x\right \| _p}.

In the case of p = 1 and p=\infty, the norms can be computed as:

 \left \| A \right \| _1 = \max \limits _{1 \leq j \leq n} \sum _{i=1} ^m | a_{ij} |,   which is simply the maximum absolute column sum of the matrix
 \left \| A \right \| _\infty = \max \limits _{1 \leq i \leq m} \sum _{j=1} ^n | a_{ij} |,   which is simply the maximum absolute row sum of the matrix

For example, if the matrix A is defined by

 A = \begin{bmatrix} 3 & 5 & 7 \ 2 & -6 & 4 \ 0 & 2 & 8 \ \end{bmatrix},

then we have ||A||1 = 7+4+8 = 19. and ||A|| = 3+5+7 = 15

In the special case of p = 2 (the Euclidean norm) and m n (square matrices), the induced matrix norm is the spectral norm. The spectral norm of a matrix A is the largest singular value of A or the square root of the largest eigenvalue of the positive-semidefinite matrix A*A:

\left \| A \right \| _2=\sqrt{\lambda_{\text{max}}(A^* A)}

where A* denotes the conjugate transpose of A.

Any induced norm satisfies the inequality

\left \| A \right \| \ge \rho(A),

where ρ(A) is the spectral radius of A. In fact, it turns out that ρ(A) is the infimum of all induced norms of A.

Furthermore, we have the spectral radius formula:

\lim_{r\rarr\infty}\|A^r\|^{1/r}=\rho(A).
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值