使用Universal Image Loader- Image can't be decoded

本文解决了在使用Android-Universal-Image-Loader加载CMYK格式图片时遇到的问题,图片无法正常显示。通过将图片格式从CMYK转换为RGB,成功解决了这一问题。

在displayImage的过程中图片不显示,错误日志为:

 Image can't be decoded [xxxxxxxxx.jpg_480x210]

错误原因及解决办法:图片格式为cymk,uil无法展示,图片格式改为rgb就好。

参考:

https://github.com/nostra13/Android-Universal-Image-Loader/issues/539

import os import sys import cv2 from cv2 import resize import numpy as np import matplotlib.pyplot as plt import argparse from PIL import Image import torch import src.utils as utils import src.dataset as dataset import crnn.seq2seq as crnn def seq2seq_decode(encoder_out, decoder, decoder_input, decoder_hidden, max_length): decoded_words = [] alph = "ABCDEFGHIJKLMNOPQRSTUVWXYZŽŠŪ-\'" converter = utils.ConvertBetweenStringAndLabel(alph) prob = 1.0 for di in range(max_length): decoder_output, decoder_hidden, decoder_attention = decoder(decoder_input, decoder_hidden, encoder_out) probs = torch.exp(decoder_output) _, topi = decoder_output.data.topk(1) ni = topi.squeeze(1) decoder_input = ni prob *= probs[:, ni] if ni == utils.EOS_TOKEN: break else: decoded_words.append(converter.decode(ni)) words = ''.join(decoded_words) prob = prob.item() return words, prob def find_median(array_vals): array_vals.sort() mid = len(array_vals) // 2 return array_vals[mid] def detect_centerline(array_vals): max_val = max(array_vals) index_list = [index for index in range(len(array_vals)) if array_vals[index] == max_val] return find_median(index_list) def rotate_image(image, angle): image_center = tuple(np.array(image.shape[1::-1]) / 2) rot_mat = cv2.getRotationMatrix2D(image_center, angle, 1.0) result = cv2.warpAffine(image, rot_mat, image.shape[1::-1], flags=cv2.INTER_LINEAR) return result def extract_peak_ranges_from_array(array_vals, minimum_val=100, minimum_range=2): start_i = None end_i = None peak_ranges = [] for i, val in enumerate(array_vals): if val >= minimum_val and start_i is None: start_i = i elif val >= minimum_val and start_i is not None: pass elif val < minimum_val and start_i is not None: end_i = i if end_i - start_i > minimum_range: peak_ranges.append((start_i, end_i)) start_i = None end_i = None elif val < minimum_val and start_i is None: pass else: raise ValueError("Cannot Parse") return peak_ranges parser = argparse.ArgumentParser() parser.add_argument('--img_path', type=str, default='', help='the path of the input image') parser.add_argument('--rot_angle', type=int, default=0, help='the global rotation image') parser.add_argument('--padding', type=int, default=10, help='paddings at the head of the image') parser.add_argument('--block_size', type=int, default=33, help='threshold for binarizing image, odd number only') parser.add_argument('--threshold', type=int, default=32, help='radius to calculate the average for thresholding, even number only') parser.add_argument('--vertical_minimum', type=int, default=800, help='minimal brightness of each VERTICAL line') parser.add_argument('--word_minimum', type=int, default=200, help='minimal brightness of each WORD') parser.add_argument('--blur', type=bool, default=False, help='apply blur to words?') parser.add_argument('--pretrained', type=int, default=1, help='which pretrained model to use') cfg = parser.parse_args() def main(): global_rot_angle = cfg.rot_angle global_padding = cfg.padding imagename = cfg.img_path if cfg.pretrained == 0: my_encoder = "./model/encoder_0.pth" my_decoder = "./model/decoder_0.pth" elif cfg.pretrained == 1: my_encoder = "./model/encoder_1.pth" my_decoder = "./model/decoder_1.pth" else: sys.exit("Unknown Pretrained Model!") print("Analyzing: "+imagename) alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZŽŠŪ-\'" print("Using Möllendorff Alphabet List: " + alphabet + "\n") # len(alphabet) + SOS_TOKEN + EOS_TOKEN num_classes = len(alphabet) + 2 transformer = dataset.ResizeNormalize(img_width=480, img_height=64) image_color = cv2.imread(imagename) image_shape = (image_color.shape[0], image_color.shape[1]) image_binary = cv2.cvtColor(image_color, cv2.COLOR_BGR2GRAY) image = cv2.rotate(image_binary, cv2.ROTATE_90_COUNTERCLOCKWISE) adaptive_threshold = cv2.adaptiveThreshold(image, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV, cfg.block_size, cfg.threshold) adaptive_threshold = rotate_image(adaptive_threshold, global_rot_angle) adaptive_threshold = cv2.copyMakeBorder(adaptive_threshold, 20, 20, 20, 20, cv2.BORDER_CONSTANT, 0) adaptive_threshold = adaptive_threshold[10:adaptive_threshold.shape[0]-10, 10:adaptive_threshold.shape[1]-10] image_blur = cv2.GaussianBlur(adaptive_threshold,(3,3),cv2.BORDER_DEFAULT) cv2.imshow('Binary Image', cv2.rotate(adaptive_threshold, cv2.ROTATE_90_CLOCKWISE)) cv2.waitKey(1) vertical_sum = np.sum(image_blur, axis=1) peak_ranges = extract_peak_ranges_from_array(vertical_sum,minimum_val=cfg.vertical_minimum,minimum_range=5) img_display = np.copy(adaptive_threshold) #peak_ranges.append((peak_ranges[-1][1],adaptive_threshold.shape[0])) peak_ranges.reverse() horizontal_peak_ranges2d = [] for peak_range in peak_ranges: start_y = 0 end_y = img_display.shape[1] image_x = image_blur[peak_range[0]:peak_range[1], start_y:end_y] horizontal_sum = np.sum(image_x,axis = 0) # plt.plot(horizontal_sum, range(horizontal_sum.shape[0])) # plt.gca().invert_yaxis() # plt.show() horizontal_peak_ranges = extract_peak_ranges_from_array(horizontal_sum,minimum_val=cfg.word_minimum,minimum_range=5) horizontal_peak_ranges2d.append(horizontal_peak_ranges) for hor in horizontal_peak_ranges: cv2.rectangle(img_display, (hor[0], peak_range[0]), (hor[1], peak_range[1]), 140, 1) word_piece = adaptive_threshold[peak_range[0]:peak_range[1],hor[0]:hor[1]] if cfg.blur: word_piece = cv2.GaussianBlur(word_piece,(1,1),cv2.BORDER_DEFAULT) else: pass image_dimension = (word_piece.shape[0], word_piece.shape[1]) #cv2.imshow('Words', word_piece) #print(word_piece.shape) if image_dimension[0] < 30 or image_dimension[1] < 20: pass else: factor = 1 image_resized = cv2.resize(word_piece, (int(image_dimension[1]*factor),int(image_dimension[0]*factor)), interpolation = cv2.INTER_AREA) hor_sum = np.sum(image_resized, axis=1) ctr_line = detect_centerline(hor_sum) image_dimension_new = (image_resized.shape[0], image_resized.shape[1]) add_padding = max([ctr_line, image_dimension_new[0]-ctr_line]) # cv2.imshow('current Image', image_resized) # cv2.waitKey(0) if image_dimension_new[1]<=500: padded = cv2.copyMakeBorder(image_resized, add_padding-ctr_line, add_padding-image_dimension_new[0]+ctr_line, 0, 0, cv2.BORDER_CONSTANT, 0) else: padded = image_resized factor = 64/padded.shape[0] padded = cv2.resize(padded, (int(padded.shape[1]*factor),int(padded.shape[0]*factor)), interpolation = cv2.INTER_AREA) padded = cv2.copyMakeBorder(padded, 0, 0, global_padding, 480 - global_padding - padded.shape[0], cv2.BORDER_CONSTANT, 0) padded = Image.fromarray(np.uint8(padded)).convert('L') padded = transformer(padded) padded = padded.view(1, *padded.size()) padded = torch.autograd.Variable(padded) encoder = crnn.Encoder(1, 1024) # no dropout during inference decoder = crnn.Decoder(1024, num_classes, dropout_p=0.0, max_length=121) map_location = 'cpu' encoder.load_state_dict(torch.load(my_encoder, map_location=map_location)) decoder.load_state_dict(torch.load(my_decoder, map_location=map_location)) encoder.eval() decoder.eval() encoder_out = encoder(padded) max_length = 121 decoder_input = torch.zeros(1).long() decoder_hidden = decoder.initHidden(1) words, prob = seq2seq_decode(encoder_out, decoder, decoder_input, decoder_hidden, max_length) print(words+" ", end = '') print("\n") cv2.destroyAllWindows() cv2.imshow('Current Line', cv2.rotate(img_display, cv2.ROTATE_90_CLOCKWISE)) cv2.waitKey(1) input("Reading Completed, Press Any Key to Exit. Ambula Baniha.") # color = (0, 0, 255) # for i, peak_range in enumerate(peak_ranges): # for horizontal_range in horizontal_peak_ranges2d[i]: # x = peak_range[0] # y = horizontal_range[0] # w = peak_range[1] # h = horizontal_range[1] # patch = adaptive_threshold[x:w,y:h] # cv2.rectangle(img_display, (y,x), (h,w), 255, 2) # # print(cnt) # # cv2.imwrite("/Users/zhuohuizhang/Downloads/ManchuOCR/Data/"+fontname+"/Result/"+'%d' %cnt + '.jpg', patch) # cnt += 1 # # cv2.imshow('Vertical Segmented Image', line_seg_blur) # cv2.waitKey(0) if __name__ == "__main__": main() 根据上面代码创建一个新的图形化py脚本,新的图形化py脚本可以调用上面代码和参数:--img_path(该参数是必填,该选项是选择图片)、--rot_angle(旋转角度,默认是0,选填)、--padding(图形头部的填充,默认值是10,选填)、--block_size(图像二值化阈值,仅限奇数,默认值是33,选填)、--threshold(计算阈值平均值的半径,仅限偶数,默认值32,选填)、--vertical_minimum(每条垂直线的最小亮度,默认值800,选填)、--word_minimum(每个单词的最小亮度,默认值200,选填)、--blur(对文字应用模糊效果?,默认值False,选填),输入参数后点击确认即可将上述代码打印的信息显示出来,上述脚本的名称为readmanchu.py 当识别完图片最后一个满文后自动关闭图片,并且不需要修改readmanchu.py脚本的情况下新创建的图形化脚本可以打包为exe并正常使用
最新发布
09-26
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值