spark源码 RangeDependency分析

本文详细解析了RangeDependency类的实现原理及应用,展示了如何通过该类建立父RDD与子RDD之间的分区依赖关系,并以UnionRDD为例介绍了其在实际场景中的使用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

/**
 * :: DeveloperApi ::
 * Represents a one-to-one dependency between ranges of partitions in the parent and child RDDs.
 * @param rdd the parent RDD
 * @param inStart the start of the range in the parent RDD
 * @param outStart the start of the range in the child RDD
 * @param length the length of the range
 */
@DeveloperApi
class RangeDependency[T](rdd: RDD[T], inStart: Int, outStart: Int, length: Int)
  extends NarrowDependency[T](rdd) {

  override def getParents(partitionId: Int): List[Int] = {
    if (partitionId >= outStart && partitionId < outStart + length) {
      List(partitionId - outStart + inStart)
    } else {
      Nil
    }
  }
}
上面的代码RangeDependency的代码,其中outStart是这个partitionId在子RDD中的开始位置,

比如
RDD1由Partition0,Partition1,Partition2组成,    RDD2由Partition0,Partition1组成
那么新组成的RDD3由Partition0,Partition1,Partition2,Partition3,Partition4组成

    在这个新的RDD中,如果要求RDD3中Partition4在RDD2中的PartitionId,先判断区间

    其中outStart=3,就是RDD2的Partition在RDD3中开始的位置,if(4 >= 3 && 4< 3+2)

    那么返回的partitionId就是 4-3+0,这里inStart为0,具体看UnionRDD的代码,如下:

   

@DeveloperApi
class UnionRDD[T: ClassTag](
    sc: SparkContext,
    var rdds: Seq[RDD[T]])
  extends RDD[T](sc, Nil) {  // Nil since we implement getDependencies

  // visible for testing
  private[spark] val isPartitionListingParallel: Boolean =
    rdds.length > conf.getInt("spark.rdd.parallelListingThreshold", 10)

  override def getPartitions: Array[Partition] = {
    val parRDDs = if (isPartitionListingParallel) {
      val parArray = rdds.par
      parArray.tasksupport = UnionRDD.partitionEvalTaskSupport
      parArray
    } else {
      rdds
    }
    val array = new Array[Partition](parRDDs.map(_.partitions.length).seq.sum)
    var pos = 0
    for ((rdd, rddIndex) <- rdds.zipWithIndex; split <- rdd.partitions) {
      array(pos) = new UnionPartition(pos, rdd, rddIndex, split.index)
      pos += 1
    }
    array
  }

  override def getDependencies: Seq[Dependency[_]] = {
    val deps = new ArrayBuffer[Dependency[_]]
    var pos = 0
    for (rdd <- rdds) {
      deps += new RangeDependency(rdd, 0, pos, rdd.partitions.length)
      pos += rdd.partitions.length
    }
    deps
  }

  override def compute(s: Partition, context: TaskContext): Iterator[T] = {
    val part = s.asInstanceOf[UnionPartition[T]]
    parent[T](part.parentRddIndex).iterator(part.parentPartition, context)
  }

  override def getPreferredLocations(s: Partition): Seq[String] =
    s.asInstanceOf[UnionPartition[T]].preferredLocations()

  override def clearDependencies() {
    super.clearDependencies()
    rdds = null
  }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值