红黑树

[code]

/*-----------------------------------------------------------
RB-Tree的插入和删除操作的实现算法
参考资料:
1) <<Introduction to algorithm>>
2) <<STL源码剖析>>
3) sgi-stl中stl_tree.h中的实现算法
4) http://epaperpress.com/sortsearch/index.html
5) http://www.ececs.uc.edu/~franco/C321/html/RedBlack/redblack.html

作者:李创 (http://www.cppblog.com/converse/)
您可以自由的传播,修改这份代码,转载处请注明原作者

红黑树的几个性质:
1) 每个结点只有红和黑两种颜色
2) 根结点是黑色的
3) 每个叶子结点(空结点被认为是叶子结点)是黑色的
4) 如果一个结点是红色的,那么它的左右两个子结点的颜色是黑色的
5) 对于每个结点而言,从这个结点到叶子结点的任何路径上的黑色结点
    的数目相同
-------------------------------------------------------------*/

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

typedef int KEY;

enum NODECOLOR
{
        BLACK        = 0,
        RED                = 1
};

typedef struct RBTree
{
        struct                RBTree *parent;
        struct                RBTree *left, *right;
        KEY                        key;
        NODECOLOR   color;
}RBTree, *PRBTree;

PRBTree RB_InsertNode(PRBTree root, KEY key);
PRBTree        RB_InsertNode_Fixup(PRBTree root, PRBTree z);

PRBTree RB_DeleteNode(PRBTree root, KEY key);
PRBTree RB_DeleteNode_Fixup(PRBTree root, PRBTree z);

PRBTree        Find_Node(PRBTree root, KEY key);
void        Left_Rotate(PRBTree A, PRBTree& root);
void        Right_Rotate(PRBTree A, PRBTree& root);
void        Mid_Visit(PRBTree T);
void        Mid_DeleteTree(PRBTree T);
void        Print_Node(PRBTree node);

/*-----------------------------------------------------------
|   A              B
|  / /    ==>     / /
| a   B           A  y
|    / /         / /
|    b  y        a  b
-----------------------------------------------------------*/
void Left_Rotate(PRBTree A, PRBTree& root)
{       
 PRBTree B;
 B = A->right;

 if (NULL == B)
  return;

 A->right  = B->left;
 if (NULL != B->left)
  B->left->parent = A;
 B->parent = A->parent;
// 这样三个判断连在一起避免了A->parent = NULL的情况
 if (A == root)
 {
  root = B;
 }
 else if (A == A->parent->left)
 {
  A->parent->left = B;
 }
 else
 {
  A->parent->right = B;
 }
 B->left = A;
 A->parent = B;
}

/*-----------------------------------------------------------
|    A              B
|   / /            / /
|  B   y   ==>    a   A
| / /                / /
|a   b              b   y
-----------------------------------------------------------*/
void Right_Rotate(PRBTree A, PRBTree& root)
{
 PRBTree B;
 B = A->left;

 if (NULL == B)
  return;

 A->left   = B->right;
 if (NULL != B->right)
  B->right->parent = A;
 B->parent = A->parent;
// 这样三个判断连在一起避免了A->parent = NULL的情况
 if (A == root)
 {
  root = B;
 }
 else if (A == A->parent->left)
 {
  A->parent->left = B;
 }
 else
 {
  A->parent->right = B;
 }
 A->parent = B;
 B->right  = A;
}

/*-----------------------------------------------------------
|        函数作用:查找key值对应的结点指针
|        输入参数:根节点root,待查找关键值key
|        返回参数:如果找到返回结点指针,否则返回NULL
-------------------------------------------------------------*/
PRBTree Find_Node(PRBTree root, KEY key)
{
 PRBTree x;

        // 找到key所在的node
 x = root;
 do
 {
  if (key == x->key)
   break;
  if (key < x->key)
  {
   if (NULL != x->left)
    x = x->left;
   else
    break;
  }
  else
  {
   if (NULL != x->right)
    x = x->right;
   else
    break;
  }
 } while (NULL != x);

 return x;
}

/*-----------------------------------------------------------
|        函数作用:在树中插入key值
|        输入参数:根节点root,待插入结点的关键值key
|        返回参数:根节点root
-------------------------------------------------------------*/
PRBTree RB_InsertNode(PRBTree root, KEY key)
{
 PRBTree x, y;

 PRBTree z;
 if (NULL == (z = (PRBTree)malloc(sizeof(RBTree))))
 {
  printf("Memory alloc error/n");
  return NULL;
 }
 z->key = key;

// 得到z的父节点
 x = root, y = NULL;
 while (NULL != x)
 {
  y = x;
  if (z->key < x->key)
  {
   if (NULL != x->left)
   {
    x = x->left;
   }
   else
   {
    break;
   }
  }
  else
  {
   if (NULL != x->right)
   {
    x = x->right;
   }
   else
   {
    break;
   }
  }
 }

// 把z放到合适的位置
 z->parent = y;
 if (NULL == y)
 {
  root = z;
 }
 else
 {
  if (z->key < y->key)
   y->left = z;
  else
   y->right = z;
 }
// 设置z的左右子树为空并且颜色是red,注意新插入的节点颜色都是red
 z->left = z->right = NULL;
 z->color = RED;

 // 对红黑树进行修正
 return RB_InsertNode_Fixup(root, z);
}

/*-----------------------------------------------------------
|        函数作用:对插入key值之后的树进行修正
|        输入参数:根节点root,插入的结点z
|        返回参数:根节点root
-------------------------------------------------------------*/
PRBTree RB_InsertNode_Fixup(PRBTree root, PRBTree z)
{
 PRBTree y;
 while (root != z && RED == z->parent->color)// 当z不是根同时父节点的颜色是red
 {
  if (z->parent == z->parent->parent->left) // 父节点是祖父节点的左子树
  {
   y = z->parent->parent->right; // y为z的伯父节点
   if (NULL != y && RED == y->color)  // 伯父节点存在且颜色是red
   {
    z->parent->color = BLACK; // 更改z的父节点颜色是B
    y->color = BLACK;     // 更改z的伯父节点颜色是B
    z->parent->parent->color = RED;// 更改z的祖父节点颜色是B
    z = z->parent->parent;   // 更新z为它的祖父节点
   }
   else // 无伯父节点或者伯父节点颜色是b
   {
    if (z == z->parent->right) // 如果新节点是父节点的右子树
    {
     z = z->parent;
     Left_Rotate(z, root);
    }
    z->parent->color = BLACK; // 改变父节点颜色是B
    z->parent->parent->color = RED; // 改变祖父节点颜色是R
    Right_Rotate(z->parent->parent, root);
   }
  }
  else    // 父节点为祖父节点的右子树
  {
   y = z->parent->parent->left; // y为z的伯父节点
   if (NULL != y && RED == y->color) // 如果y的颜色是red
   {
    z->parent->color = BLACK;// 更改父节点的颜色为B
    y->color = BLACK;  // 更改伯父节点的颜色是B
    z->parent->parent->color = RED; // 更改祖父节点颜色是R
    z = z->parent->parent;// 更改z指向祖父节点
   }               
   else // y不存在或者颜色是B
   {
    if (z == z->parent->left) // 如果是父节点的左子树
    {
     z = z->parent;
     Right_Rotate(z, root);
    }
    z->parent->color = BLACK; // 改变父节点的颜色是B
    z->parent->parent->color = RED;// 改变祖父节点的颜色是RED
    Left_Rotate(z->parent->parent, root);
   }
  }
 } // while(RED == z->parent->color)

        // 根节点的颜色始终都是B
 root->color = BLACK;

 return root;
}

/*-----------------------------------------------------------
|        函数作用:在树中删除key值
|        输入参数:根节点root,待插入结点的关键值key
|        返回参数:根节点root
-------------------------------------------------------------*/
PRBTree RB_DeleteNode(PRBTree root, KEY key)
{
 PRBTree x, y, z, x_parent;

 z = Find_Node(root, key);
 if (NULL == z)
  return root;

// 当z有一个空子树的时候,y == z
// 否则,y是大于z最小的结点
 if (NULL == z->left || NULL == z->right)
  y = z;
 else
 {
  y = z->right;
  while (NULL != y->left)
   y = y->left;
 }

// x是y的子树,可能为NULL
 if (NULL != y->left)
  x = y->left;
 else
  x = y->right;

// 设定x的位置取代y
 if (NULL != x)
  x->parent = y->parent;
 if (NULL == y->parent)
  root = x;
 else if (y == y->parent->left)
  y->parent->left = x;
 else
  y->parent->right = x;

// 把y的key拷贝到z中,这样y就是待删除的结点了
 if (y != z)
 {
  z->key = y->key;
 }

// 如果y的颜色值是B,那么要对树进行修正
 if (BLACK == y->color && NULL != x)
  RB_DeleteNode_Fixup(root, x);

 free(y);

 return root;
}

/*-----------------------------------------------------------
|        函数作用:对删除key值之后的树进行修正
|        输入参数:根节点root,删除的结点的子结点x
|        返回参数:根节点root
-------------------------------------------------------------*/
PRBTree RB_DeleteNode_Fixup(PRBTree root, PRBTree x)
{
 PRBTree w;

 while (x != root && BLACK == x->color)
 {
  if (x == x->parent->left)   // 如果x是左子树
  {
   w = x->parent->right;    // w是x的兄弟结点

   if (NULL == w)
    continue;

   if (RED == w->color)// 如果w的颜色是红色                                               
   {
    w->color = BLACK;
    x->parent->color = RED;
    Left_Rotate(x->parent, root);
    w = x->parent->right;
   }
   if (NULL != w->left         && BLACK == w->left->color &&
     NULL != w->right && BLACK == w->right->color)
   {
    w->color = RED;
    x = x->parent;
   }
   else
   {
    if (NULL != w->right && BLACK == w->right->color)
    {
     w->left->color = BLACK;
     w->color = RED;
     Right_Rotate(w, root);
     w = x->parent->right;
    }

    w->color = x->parent->color;
    x->parent->color = BLACK;
    w->right->color  = BLACK;
    Left_Rotate(x->parent, root);
    x = root;
   }
  }
  else
  {
   w = x->parent->left;
   if (NULL == w)
    continue;
   if (RED == w->color)
   {
    w->color = BLACK;
    x->parent->color = RED;
    Left_Rotate(x->parent, root);
    w = x->parent->left;
   }
   if (NULL != w->left         && BLACK == w->left->color &&
                                NULL != w->right && BLACK == w->right->color)
   {
    w->color = RED;
    x = x->parent;
   }
   else
   {
    if (NULL != w->left && BLACK == w->left->color)
    {
     w->right->color = BLACK;
     w->color = RED;
     Left_Rotate(w, root);
     w = x->parent->left;
    }

    w->color = x->parent->color;
    x->parent->color = BLACK;
    w->left->color  = BLACK;
    Right_Rotate(x->parent, root);
    x = root;
   }
  }
 }

 x->color = BLACK;

 return root;
}

void Print_Node(PRBTree node)
{
 char* color[] = {"BLACK", "RED"};
 printf("Key = %d,/tcolor = %s", node->key, color[node->color]);
 if (NULL != node->parent)
  printf(",/tparent = %d", node->parent->key);
 if (NULL != node->left)
  printf(",/tleft = %d", node->left->key);
 if (NULL != node->right)
  printf(",/tright = %d", node->right->key);
 printf("/n");
}

// 中序遍历树
void Mid_Visit(PRBTree T)
{
 if (NULL != T)
 {
  if (NULL != T->left)
   Mid_Visit(T->left);
  Print_Node(T);
  if (NULL != T->right)
  Mid_Visit(T->right);
 }
}

// 中序删除树的各个节点
void Mid_DeleteTree(PRBTree T)
{
 if (NULL != T)
 {
 if (NULL != T->left)
  Mid_DeleteTree(T->left);
 PRBTree temp = T->right;
 free(T);
 T = NULL;
 if (NULL != temp)
  Mid_DeleteTree(temp);
 }
}

void Create_New_Array(int array[], int length)
{
 for (int i = 0; i < length; i++)
 {
  array[i] = rand() % 256;
 }
}

int main(int argc, char *argv[])
{
//int array[10] = {80, 116, 81, 205, 82, 68, 151, 20, 109, 100};
 int array[10];
 srand(time(NULL));
 Create_New_Array(array, 10);
 PRBTree root = NULL;
 int i;
 for (i = 0; i < 10; i++)
 {
  root = RB_InsertNode(root, array[i]);
 }

 Mid_Visit(root);

// 随机删除一个结点
 int index = rand() % 10;
 printf("delete node %d/n", array[index]);
 root = RB_DeleteNode(root, array[index]);
 Mid_Visit(root);

  // 删除整颗树
 Mid_DeleteTree(root);

 return 0;
}
[/code]

 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值